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Abstract

The contents of this report covers: (i) development of
optimal geometry for crowned helical gears; (ii) method for their
generation; (iii) tooth contact analysis (TCA) computer programs
for the analysis of meshing and bearing contact of the crowned
helical gears and (iv) modelling and simulation of gear shaft
deflection.

The developed method for synthesis is used for determination
of optimal geometry for crowned helical pinion surface and is
directed to 1localize the bearing contact and guarantee the
favorable shape and low level of the transmission errors.

Two new methods for generation of the crowned helical pinion
surface have been proposed. One is based on application of the
tool with a surface of revolution that slightly deviates from a
regular cone surface. The tool can be used as a grinding wheel
or as a shaver. Other is based on crowning pinion tooth surface
with predesigned transmission errors. The pinion tooth surface
can be generated by a computer controlled automatic grinding
machine.

The TCA program simulates the meshing and bearing contact of
the misaligned gears. The transmission errors are also
determined.

The gear shaft deformation has been modelled and
investigated. It has been found the deflection of gear shafts

has the same effects as those of gear misalignment.

PRECEDING PAGE BLANK NOT FILMED

iii



Table of Contents

ADsStract « ¢ ¢ o o ¢ o o o o o o o e e s s e s
List of Symbols « ¢« & ¢ ¢ o o o o o o o o o o o
Chapter

SUMMATY ¢ o « o o o o s o o s o s o o o s o o
l. Introduction .« « ¢ o« o o o o o o o o o o o o

2. Basic Concepts and Considerations . . . . .

2.1 Simulation of Meshing . + « ¢« « o + o &
2.2 Simulation of Contact . . « ¢« ¢« & « « &
2.3 Partial Compensation of Transmission

EXTOLS o o o o s o o s o o o o o o o &
2.4 Misalignment of Regular Helical Gears .
2.5 Surface Deviation by the Change of

Pinion Lead . ¢ ¢ ¢ o o o o o o o o o o

3. Generation of Pinion Tooth Surface by a Surface

Oof Revolution =« v ¢ o o ¢ o o o o o o o o o

1 Basic Consideration . . .« « « « ¢ & o« @
.2 Principle of Generation and Used
Coordinate Systems . « . ¢ ¢ o ¢ o o &
3.3 Tool Surface « ¢ ¢ ¢ ¢ o o o o ¢ o o e
3.4 Pinion Tooth Surface . « « o o o o o &
3.5 Condition of Pinion Non-Undercutting .
3.6 Principal Directions and Curvatures of
Tooth Surface « « « ¢ o o o o o o o o
3.7 Contact Ellipse and Bearing Contact . .
3.8 Simulation of Meshing and Determination

of Transmission Errors .« « « ¢ o o o o
3.9 Modification of Generating Surface Zp .

4. Crowned Helical Pinion with Longitudinal
Path Contact « o« o ¢ o o o o o ¢ o o o o o

.1 Basic Concepts and Considerations . . .
2 hiethod 1 . L] L] L] L) L] . LJ . L] . . . L] .
3 Method 2 L] * L] L] L) . L] . L] L] L] L] . . .
4

Discussion and Example .« « « « « o ¢« &

o

5. Deformation of Helical Gear Shaft . . . .« &

5.1 Basic Concepts and Considerations . . .
5.2 Force Applied on Gear Shaft . . . . . .
5.3 Modelling of Shaft Deformation . . . .

iv

Page
iii

vi

w N

[oe )]

11

12
12

13
15
18
21

25
29

30
35

38

38
39
44
50

52
52

53
54



5.4 Example and Discussion .
6. Conclusion . . « ¢ ¢ s o o o o
References « « « o o o o o o o o o
Figures B

Appendix - Flowcharts and Programs

59
60

62

94



a*
a
b
b*

[bij]
c
C A Y

o 287 7P
C
d

(i) (i)
€1 1 11

fi(X1,X2oo o)

Fl(xl,X2coc)

F
E
E
F
~Z
g(¢l)
Lerderke
[Lij]
d
m p—vg _?E
1p ds
dm
ms - i
1p ds

List of Symbols

half the 1length of major axis of contac!
ellipse

coefficient of parabolic function

addendum of cutting tool or coefficient of
linecar function '

half the 1length of minor axis of contact
ellipse

3x3 auxiliary matrix

Operating center distance

operating center distance vector

nominal center distance

nominal center distance vector

height of generating <cone or level of
transmission error.

unit vectors along principal direction of
surface i if principal directions of twc
surface coincide, i is neglected.

function expression with respect to variable
X1rXgeee

function expression with respect to variable
X1, X5

magnitude of F

acting force between gear tooth surfaces
acting force in transverse section

acting force in axial direction

auxiliary function of ¢1

unit direction vectors of coordinate system t
line of tangency of surfaces sy and Zj
projection transformation matrix (from Sj tc
S;)

kinematic ratio

derivative of kinematic ratio of gear and rack

cutter

vi



o
-

[y
€

[\

|
|

[o))

€
[

o
3 ©
N

[N
[

kinematic ratio of gears

derivative of kinematic ratio of gears

coordinate transformation matrix (from Sj to

Si)

velocity of end point of unit normal
corresponding a point moving over a surface
unit normal vector of surface zj in coordinate
system S; [sometimes (i) is omitted if it is
unnecessary to specify coordinate system]
nunber of pinion teeth

number of gear teeth

origin of coordinate system i

diametral pitch

radius of pitch circle for pinion

radius of pitch circle for gear |

radius of arc of generating surface

position wvector describing surface Zj with
surface coordinate (u,e) in coordinate system
Si
parameter of cutting motion

[sometimes (j) 1is omitted]

coordinate system i

surface coordinates of pinion and gear
generating surface coordinate
auxiliary variable

velocity of a point moving over a surface

velocity of surface Zi in coordinate system j
(j is omitted sometimes)

relative velocity between surface Zi and ©, at
contact point in coordinate system f (£ is
omitted sometimes).

projection of V(ij) in the principal direction
of surface

coordinates of vector in S; [sometimes (j) is
omitted]

vii



Ay
AS

A¢2
A¢'2

€

8.
1

(i)
I 14

(i)_

€

>
[N

(i3)

e 6 & © U ™M M ™M ™M qQq
NN QOO O N
=)

wllwz
Vo,

(i)
K11
K(i)

I

+K

(1)
II

half of cone angle or coordinate of generatirn
surface

generating surface coordinate

helical angle

crossing angle between axes of pinion and gea
intersecting angle between axes of pinion an
gear

kinematic error (transmission error)
derivative of kinematic error with respec
to ¢1

elastic deformation of the contacting point

generating surface coordinate
principal curvatures of surface Zi

auxiliary function

rotation of certain section of gear shaft
radius of genetr@x arc fog revolute surface
angle between eél) and eij)
pinion tooth surface
gear tooth surface (or shape)

gear generating surface

pinion generating surface

angle of rotation for pinion being generated
angle of rotation for gear being generated
angle of pinion rotation in meshing with gear
angle of gear rotation in meshing with pinion
theoretical angle of gear rotation in meshin
with pinion

new coordinates to describe parabolic functio
pressure angles 1in transverse section an
normal section

angular velocity of pinion

angular velocity of gear

angular velocity of pinion being generated

angular velocity of gear being generated

viii



< ' E

(12)_ (1)_ (2)
=W w

~ ~

relative angular velocity
angle for installment of pinion cutting tool
deflection of certain point of gear shaft

ix




PAGE ___ INTENTIONALLY BLANM-



SUMMARY

The topology of several types of modified surfaces for
helical gers are proposed. The modified surfaces allow
absorption of 1lincar or almost linear function of transmission
errors caused by gear misalignment and deflection of shaft.
These surfaces result in the improved contact of gear tooth
surfaces. The principles and corresponding programs for computer
aided simulation of meshing and contact of gears have been
developed. The results of this investigation are illustrated

with numerical examples.

1. INTRODUCTION

Traditional methods for generation of involute helical gears
with parallel axes provide developed ruled tooth surfaces for the
gear teeth (Fig. l.1l). The tooth surfaces contact each other at
every instant along a line, L, that is the tangent to the helix
on the base cylinder. The surface normals along L do not change
their orientation. The disadvantage of regular helical gears is
that they are very sensitive to misalignments such as the
crossing or intersection of gear axes. The misaligned gears
transform rotation with a linear function of transmission errors
(a main source of noise) and the bearing contact is shifted to
the edge of the teeth. The frequency of transmission errors
coincides with the frequency of tooth meshing. The actual
contact ratio (the average number of teeth being in mesh at every

instant) is close to one and is far from the expected value.



These are the reasons why we have to reconsider the
canonical ideas on involute helical gears and modify their tooth
surfaces. Crowning of the gear surfaces is needed to negate the
effects of transmission errors and the shift of contact between
the gear tooth surfaces. Deviations of screw involute gear tooth
surfaces to provide a new topology that can reduce the gear
sensitivity to misalignment will be developed. Theoretically,
the modified tooth surfaces will be in contact at every instant
at a point instead of a line. Actually, due to the load applied
between meshing teeth, the contact will be spread over an
elliptical area whose dimensions may be controlled. Methods for
gear tooth surface generation that provide the desirable surface
deviation are proposed. For economical reasons only the pinion
tooth surface is modified while the gear surface is kept as a

regular screw involute surface.

2, BASIC CONCEPTS AND CONSIDERATIONS

2.1 Simulation of Meshing

The investigation of influence of gear misalignment requires
a numerical solution for the simulation of meshing and contact of
gear tooth surfaces. The basic ideas of this method (Litvin,
1968) are as follows:

(1) The meshing of gear tooth surfaces is considered in a
fixed coordinate system, Sg¢. Usually, the generated gear tooth
surfaces may be represented in a three parametric form with an

additional relation between these parameters - Gaussian



coordinates. Such a parametric form is the result of
representation of a gear tooth surface as an envelope of the
family of the tool surface (the generating surface) and two from
the three Gaussian coordinates are inherited from the tool
surface.

The  continuous tangency of gear tooth surfaces is

represented by the following equations

(1) (2)

£ (uys800y000) =T (U,00,,0,,8,) (2.1.1)
n e e = 0w 000,00, a (D] 2[4
(2.1.2)
f6(ul,el,¢l) =0 (2.1.3)
f7(u2,92,w2) =0 (2.1.4)
Here: uj and 6; are the tool surface curvilinear

coordinates, wi is the parameter of motion in the process of
generation of the gear tooth surface, ¢i is the angle of rotation
of the gear being in mesh with the mating gear.

Equations (2.1.1) to (2.1.4) provide that the position
r(1) (1) (2)

~

are

vectors and r and surface unit normals n and n

equal for the gear tooth surfaces in contact (Fig. 2.1). Vector
equations (2.1.1) and (2.1.2) yield five independent equations

and the total equation system is



fi(u]_'el'¢1’u2’62’¢2’w1’w2) = OI i‘e' []‘IS]I

f6(ul,61,¢1) = 0, f7(u2,62,w2) =0 (2.1.5)

An instantaneous point contact instead of a 1line contact is

guaranteed if the Jacobian differs from zero, i.e. if

D(fl'fZ'f3'f4'f5'f6'f7)
D(ullel’wl'u2,62’¢2’¢2)

# O (2.106)

If the inequality equation (2.1.6) is observed, then the system
of equations (2.1.5) may be solved in the neighborhood of the

contact point by functions

ul(¢l),u2(¢l),w1(¢1),.....,¢2(¢1) (2.1.7)

These functions are of class C1 (at least they have continuous
derivatives of the first order). Functions (2.1.7) and equations
(2.1.5) enable calculation of the transmission errors (deviation
of ¢2(¢1) from the prescribed 1linear function) and the path of
the contact point over the gear tooth surface.

For the case when the gear tooth surface is a regular screw
involute surface, it may be directly represented in a two-
parametric form and the number of equations in system (2.1.5) may

be reduced to six.



2.2 Simulation of Contact

Due to the elastic approach of the gear tooth surfaces their
contact is spread over an elliptical area. It is assumed that
the magnitude of the elastic approach is known from experiments
or may be predicted. Knowing in addition the principal
curvatures and directions for two contacting surfaces at their
point of contact we may determine the dimensions and orientation
of the contact ellipse (Litvin, 1968).

The determination of principal curvature and directions for
a surface represented in a three-parametric form is a complicated
computational problem. A substantial simplification of this
problem may be achieved using the relations between principal
curvatures and directions, and the parameters of motion for two
surfaces being in contact at a line. One of the contacting
surfaces 1is the tool surface and the other is the generated
surface.

Helical gears with modified gear tooth surfaces will be
designed as surfaces being in point contact at every instant.
The point of contact traces out on the surface a spatial curve
(the path of contact) whose location must be controlled. The
tangent to the path of contact and the derivative of the gear
ratio a%: (m21(¢1)) may be controlled by using the relationship
between principal curvatures and directions for two surfaces that

are in point contact (ref. 2). Here:

92
m21 = 'w_]‘.‘ = f(¢l)



is the gear ratio.

2.3 Partial Compensation of Transnission Errors
Aligned gears transform rotation with a constant gear ratio

Moy and

N

= L
¢20(¢1) - N2 ¢1 (2.3.1)

is a linear function. Here: N; and N, are the numbers of gear
teeth. An investigation of the effect of helical gear rotational
axis 1intersection or crossing indicates that ¢2(¢1) becomes a
piece-wise function which is nearly 1linear for each cycle of

meshing (Fig. 2.2(a)). The transmission errors are determined by

N
1
A¢2(¢l) = ¢2(¢l) - ¢1 ﬁ— (2.3.2)

2
and they are also represented by a piece-wise 1linear function
(Fig. 2.2(b)). Transmission errors of this type cause a
discontinuity of the gear angular velocity at transfer points and
vibration becomes inevitable. The new topology of gear tooth
surfaces proposed in this report allows the absorption of a
linear function of transmission errors that results in a reduced
level of vibration. This is based on the possibility to absorb a
linear function by a parabolic function.
Consider the interaction of a parabolic function given by

A¢§1) = —a¢f (2.3.3)



with a linear function represented by
2
2o ! ) < bs, (2.3.4)
The resulting function

Ay = Dy - a¢f (2.3.5)

may be represented in a new coordinate system (Fig. 2.3):

5 :
where
2
b b
4a
W ; (1) 2, . . _
le consider that Ad o = -a¢; is a predesigned function ‘that

exists even 1if misalignments do not appear. The absorption of

;2) = b¢1 by the parabolic function A¢él) = —a¢i means

that gear misalignment does not change the predesigned parabolic

function A¢

function of transmission ervors. Thus the resulting function of

;1) + A¢é2) will keep its shape as a

parabolic function although the gears are misaligned. The

transmission errors Ap, = Ad

resulting function of transmission errors ¢2(¢1) may be obtained
by translation of the parabolic function A¢gl).
The absorption of a linear function of transmission errors

by a parabolic function is accompanied by the change of transfer



points. The transfer points determine the positions of the gears
where one pair of teeth is rotating out of mesh and the next pair

is coming into mesh. The change of transfer points is determined

2
with Ap, = %3 and A¢2 = Qui, the cycle of meshing of one pair
4a
of teeth is ¢ = %1 i e 1,2. It may happen that the absorption
1

of a linear function by a parabolic function is accompanied with
a change that is too large. If this occurs the transfer points

and the resulting parabolic function of transmission

errors, wz(wl), will be represented as a discontinuous function
2.4). To avoid this, it is

for one cycle of meshing (Fig.

necessary to limit the tolerances for gear misalignment.

2.4 Misalignment of Regular Helical Gears
Regular helical pinion and gear can be represented by their
surface position vectors and normal vectors in coordinate system

Sl and 82 as:

{ coszw ' ' T
y - EEEJ:" cos(¢p - wc)[tpsulsp + r1¢p] + r151n¢p
1 coszw
(xy] = Zl= 'Easwc sin(¢p - wc)[tpsinsp + r1¢p] + rlcos¢p
11 o sin’ . 2
tp(cosep + sin wn COSBD ) + r1¢951n wntgep
- 1 - J
(2.4.1)
coswncosspcos¢p + 51mpn51n¢p
M1x '
[n1] = nly = —coswncosBpsin¢p + 51nwpcos¢p
nlzJ _
‘f coswn31n8p ]
(2.4.2)



2
cos ¢V

_ EB§¢C sin(¢G - ¢C)[—thian + r2¢G] + r25in¢G
X
[r,] = ] = 33§$;— s1n(¢G - wc)[—tG51an + r2¢G] + r,cos¢.
2 e 2 sin28 9
G cosBp + sin wn ESEE;B) - ry6.8in wntgsp
! 1 ]
(2.4.3)
“coswncosepcos¢G + sinwnsin¢G'
n2x
[n2] = n2y = —coswncosepsin¢G + sinwncos¢G
N2z '
;COSwnSlnﬁp J
(2.4.4)

where wn and ¢c are the pressure angles in gear tooth normal
section and transverse section respectively; Bp is the helical
angle at the pitch cylinder of the pinion and the gear; rj and ry
are the radii pitch <c¢ylinder of the pinion and the gear
respectively; ¢D, and tp are the surface parameters of the

f oy

pinion tooth surface; and t_, are the surface parameters of the

e G
gear tooth surface.

When the helical pinion and gear are in mesh, with their
axes misaligned, their position vectors and normal vectors can be
transformed to the fixed coordinate system Sg. The basic ideas
have already been discussed in the Section 2.1. And the real
approach of transformation and the matrices to describe the

misalignment and gear rotation will be given in Section 3.8.

It is found that when the misalignment occurs the regular




pinion and gear surface cannot contact in tangency. That is, in
Sgr their normals can not be equal in all circumstances. In this
case, only the gear tooth edge contacts pinion tooth surface in
tangency. Therefore, in the fixed coordinate system, there are
four equations to describe the contact, that is, the equalities
of three position vectors describing gear tooth edge and pinion
tooth surface as well as the zero product of gear tooth edge
tangency and pinion tooth normal.

The computer aided simulation of meshing of misaligned
helical gears with regular tooth surfaces shows that the
transformation of rotation is accompanied with large transmission
errors. There are two sub-cycles of meshing during the complete
meshing cycle for one pair of teeth. These sub-cycles correspond
to the meshing of (1) a curve with a surface, and (2) a point
with the surface. The curve is the involute curve at the edge of
the tooth of the gear and the point is the tip of the gear tooth
edge. The transmission errors for the period of a cycle are
represented by two linear functions (Fig. 2.5). The
transformation of rotation will be accompanied with a jump of the
angular velocity of the driven gear and therefore vibrations are
inevitable.

The results of computation are presented for the following

case. Given: number of teeth Ny = 20, N, = 40, diametral pitch
1

in normal section P, = 10 in”*, gear tooth length L = 10/Pn the
helical angle Bp = 15°, the normal pressure angle wn = 20°, The
gear axes are crossed and form an angle Ay = 5 arc minutes. The

computed transmission errors are represented in table 2.4.1.

10




TABLE 2.4.1 - TRANSMISSION ERRORS OF REGULAR HELICAL
GEARS WITH CROSSED AXES

¢i, -8 -5 -2 1 4 7 10
deg
XPY 4,90 3.06 1.22 -0.61 -2.45 -4,29 -6.12
sel

2.5 Surface Deviation by the Change of Pinion Lead

Helical gears in this case are designed as helical gears
with crossed axes. The crossing angle is chosen with respect to
the expected tolerances of the gear misalignment (Ay 1is in the
range of 10 to 15 arc minutes). The gear ratio for helical gears
with crossed axes may be represented (Litvin, 1968) as

Wy 'y o sin A2

M = w. - sin A

(2.5.1)
12wy 1y bl

where ryi and A are the radius of the base cylinder and the

bi
lead angle on this cylinder, ie 1,2. Ap2 - Apl = AY.
Here: Xpi is the lead angle on the pitch cylinder. The advantage
of application of crossed helical gears is that the gear ratio is
not changed by the misalignment (by the change of Ay). The tooth
surfaces contact each other at a point during meshing. The
disadvantage of this type of surface deviation is that location
of the bearing contact of the gears is very sensitive to gear
misalignment. A slight change of the crossing angle causes
shifting of the contact to the edge of the tooth (Fig. 2.6).

The discussed type of surface deviation is reasonable to

apply for manufacturing of expensive reducers of large dimensions

11



when the lead of the pinion can be adjusted by regrinding. While
changing by regrinding the parameters ry1 and Yh1? the

requirement that the product ryq sinx must be kept constant.

bl
Then, the gear ratio M,y will be of the prescribed value and
transmission errors caused by the crossing of axes will be zero.
Theoretically, transmission errors are inevitable if the
axes of crossed helical gears become intersected. Actually, if
gear misalignment is of the range of 5 to 10 arc minutes, the
transmission errors are very small and may be neglected. The

main problem for this type of misalignment is again the shift of

the bearing contact to the edge (Fig. 2.6).

3. GENERATION OF PINION TOOTH SURFACE BY A SURFACE OF REVOLUTION

3.1 Basic Consideration

The purpose of this method for deviation of the pinion tooth
surface is to reduce the sensitivity of the gears to
misalignment. Also the transmission error must be kept to a low
level and stabilize the bearing contact. This investigation
shows that this goal may be achieved by the proposed method of
crowning but the bearing contact cannot cover the whole
surface. The reason for this is that the instantaneous contact
ellipse moves across but not along the surface (Fig. 3.1).

The proposed method for generation is based on the following
considerations. It is well known that the generation of a
helical gear may be performed by an imaginary rack-cutter with

skew teeth whose normal section represents a regular rack-cutter

12



for spur gears (Fig. 3.2(a)). We may imagine that two generating
surfaces, ZG and zp, are applied to generate the gear tooth
surface and the pinion tooth surface, respectively (Fig.
3.2(b)). Surface s is a plane (a regular rack-cutter surface),

and Zp is a cone surface. Surfaces ZG and Zp are rigidly
connected and perform translational motion, while the pinion and
the gear rotate about their axes (Fig. 3.3). The generated
pinion and gear will be in point contact and transform rotation
with the prescribed linear function ¢2(¢1). However, due to gear
misalignment, function ¢2(¢1) becomes a piecewise linear function
(Fig. 2.2(a)) that is not acceptable. To absorb a 1linear
function of transmission errors (Fig. 2.2(b)), a predesigned
parabolic function of transmission errors is used. For this
reason a surface of revolution that slightly deviates from the
cone surface 1is proposed (Fig. 3.2(c)). The radius of the
surface of revolution in its axial section determines the level

of the predesigned parabolic function. The pinion crowning

process may be accomplished by grinding, shaving or lapping.
3.2 Principle of Generation and Used Coordinate Systems

G
is a plane and generates the helical gear

Consider two rigid connecting surfaces £, and Xp. The

generating surface EG

tooth surface that is an involute screw surface. Surface zp is a
surface of revolution. Initially, we consider that Zp is a cone

surface and zp and £,. contact each other along a straight 1line

G

that is the generatrix of the cone.

13




G

illustrates the process for generation. While the rigidly

Fig. 3.4 shows the generating surfaces §, and zp. Fig. 3.5

connected generating surfaces perform a translational motion, the
pinion and geavr rotate about their axes O1 and 02,
respectively. The parameter of motion of the cutter, S, and the
angles of rotation of the pinion and the gear, ¢l and ¢2, are

related as follows:

(3.2.1)

where rq and ry are the great centrodes radii, the cutter
centrode is the straight 1line that 1is tangent to the gear
centrodes. Point I 1is the instantaneous center of rotation.
Coordinate systems Si and S, are rigidly connected to the helical
pinion and the helical gear, whereas coordinate systems S, and Sg¢
are rigidly connected to the tool surface and fixed frame. The
generating surface I

G
contact 1lines LG2 and L

(a plane) and Zp are covered with a set of

1 respectively---the instantaneous lines

P
of tangency of surfaces Lo and 22 and Zp and Zy (Fig. 2.3,
a,b). The location of these 1lines depends on the value of

parametric ¢G and ¢D(¢p and ¢G are related). Line LGp is the

line of tangency of generating surfaces ZG and zo.

'y

When Zl and 22

g are generating corresponding point Mpi and Mgj on the helical

are generated, at any moment, one point M; on line
L
P
gear surface zy and Loe When the £ and z, are meshing without
misalignment My; and Mgj contact each other in turn. Now it is

clear why L, is not parallel with the edge of Lot The reason is

p

14




that in this way, the contact ratio of crowned helical pinion and

regular helical gear will be higher.

3.3 Tool Surface

The pinion generating surface 1is a <cone and may be

represented in an auxiliary coordinate system Sy (Fig. 3.7) as

follows:
[ u _cosfsina |
x o
d
Ed = yd = d—uocosa
23 i (3.3.1)
1 . .
-u_sS1iné _sino
p P
L 1 i
where 0 < u « , 0 < 8 < 2r. The surface normal is
cosa
represented by
ard - [COSGCOSQP
= —3a IS R i i «3.2
gd 5 X 3 u951na sina (3.3.2)
p COSasinep

The unit surface normal is (provided uosina # 0)

AT

cCosacos
D

o

Bd = {sina (3.3.3)

cosasing

Figure 3.8 illustrates the installment of the conic tool in
coordinate system S, step by step as follows:
(i) From coordinate system Sq to Sp', the cone is tangent to the

plane y_', o.', 2z, ' where the tangent line L (see Section3.?2)
b b pG

b
is coincident with yb' axis. Here, we have (Fig. 3.8a).

15



cosa sina 0 -dsina
[Mb'd] = |=-sina cosa 0 dtgoesina
0 0 1 0
0 0 0 1

(3.3.4)
where the d is the height of cone.
(ii) From coordinate system Sb' to Sb' the tangent line of cone
and plane y, 0,z is declined with an angle u (see Fig. 3.4), also

the origin ob' and o, are not coincident. Here we have (Fig.
3.8b). _
[ 1 0 0 0
(M ] =10 S ~si .
bp'l = cosy siny Sosv-
0 sin s b t
U cosyu cosv_ gu
L O 0 0 1 J (3.3.5)

where b is the addendum height of the tool.
(iii) From coordinate system Sb to Sa' the tool is declined with
a pressure angle wn' For the helical gear, the wn is measured at

the normal cross section. Here, we have (Fig. 3.8c).

cosy -simpn 0 0

[Mab] = 51n¢n coslpn 0 0 (3.3.6)
0 0 1 0
0 0 0 1

(iv) From coordinate system S, to S, the helix angle Bp is

considered. Here we have (Fig. 3.8d)

cosBp 0 —51n8p 0
M 1 = 0 1 0 0 (3.3.7)
ca
sin 0 cos 0
BP BP
0 0 0 1
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In coordinate system S,, the tool surface and its normal can

be represented as:

(p), _
(e P71 = M0 M 1D T DMy g [xy) (3.3.8)

(p), -
COCSS NETN SN N o AN S N AU R 98

where 3 x 3 L matrix is from corresponding 4 x 4 M matrix,
excluding the 1last row and last column. Substituting Eq.
(3.3.1), (3.3.3), (3.3.4), (3.3.5), (3.3.6) and (3.3.7) into
Eq. (3.3.8), finally we obtain the tool surface Zp and its normal

in coordinate system S, as

[ (p)] ] ]
Xc n(P)
(p) (p) (p) ex
(x P’ = |¥ec . In Pl =1 (p) (3.3.9)
c o) n
2 (P) cy
c n(p)
1 4 L cz
where
(p) _ . + singsi
Xc UpCOSGpSlna(COSaCOSwnCOSBp 1na51mpncosucossp

+ sinasinusing )+u sin® sina(siny sinucoskR - cosusing )
P p P ¢n P p

+ u cosa({cosasiny cosucosB _-sinacosy _cosB_  + cosasinusing )
p n p n p p
d b . . .
- - Y[siny cosucosB_ + sinusing ]
cosa cosy cosu n o) p
Y(p) = u _cosf _sina(cosasiny - sinacosy _cosu)
c o) p n n
- upsinepsinacoswnsinu - UCOSa(sinasinwn + c05acoswncosu)
d b
( - )cosucosy
cosa cosy cosy n

17



(p) . . . . . . \
Z =u _cosb sina(cosacosv sing _+sinasiny cosusinf _=-sinasinpucosg )
p VpSinky bpeosu p H p

> P
+u_sind _sina(siny_sinusinB_ + cosucosg )
p p ) n ) P ) o )
+u_cosa (cosasiny cosusinB_ - sinacosy_sing_ - cosa sinu)
Pj b D§ P n P
+ - - i in + sin S
(COSa coswncosu)( c05“81n8ps wn Sinuco Bp)

(p)
CcX

o}
i

= CcOsf_cosa({cosacos CcOS + in sin [e]0]:) oS
D ( 12N Bp sina L% ucos 8

sinasinusinsp) + sine COSa(sinwnsinucosBp - cosusinsp)

+

-

sina(sinacoswncosBp-COSasinwncosucosBp-COSasinusinsp)

NP) _

cos® cosal{cosasiny —-sinacosy cosu)-siné cosacosy _sin
cy ( LN vy u) o L Bp

+ sina(sinasimpn + COSacoswncosu)

(p)
cz

o]
§

= cosepcosa(COSacoswnsinep+sinasinwncosusian—sinasinucosBp)

+

sine cosa(siny sinusinB_ + cosuycosB )
o wn p o

+

sina(sinacoswnsian-cosasinwncosusin8p+cosasinucosBp)

3.4 Pinion Tooth Surface
The equation of meshing of the generating surface zp and the
helical pinion tooth surface is represented by

(P) P (B B gtl)y g (3.4.1)

2

~

We can also use equation based on the fact that the contact
normal of generating and generated surfaces must intersect the
instantaneous axis of rotation I-I (Litvin, 1968). Thus, we

obtain (Fig. 2.2).
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_(P) _,(P) _,(P)
X X Yc Yo Z -2z

c ‘¢ _ _ e e
Y T T () T T (P (3.4-2)
cx cy cz

where (Xc, YC, ZC) are the coordinates of a point that lies on

(B, (B (P

axis I-I;
’ c I

are the coordinates of cone surface;

Nexr  DNey and n,, are the projections of the surface unit

normal. From Fig. 3.5, it is known that

Equation (3.4.2), (3.4.3), and (3.3.9) yield

£.(u ,9 =-u [cos8 (cosucosB +sinpsiny sing
1 (M p:¢p) p[ p( u b u v p)

+sind (sinasinucosB -cosacosy sinB -sinasiny cosusing
b ucosg, Yo o Y cosu p)]

(S b

cosa COSl,l)nCOSu

) [(cosepcosza+sin2a).[cosucoss
+siny sinuysing _1-sin® _cosacosy _sing ]
¢n P P ¢n jo
+r co cos siny -si s
¢p[ sep a(cosa wn sinaco wncosu)
+sin inasi + ~-si i
sina(sina nwn COSacoswncosu) 51n6p005acoswn81nwn]
= 0

(3.4.4)

The helical pinion tooth surface can be obtained by transforming
the generating tool surface zp to coordinate system Sy, together
with equation of meshing. The coordinate transformation in

transition from S, to Sg is represented by the matrix Mg, as

(Fig. 3.5)
1 0 0 -r1¢p
M_ ] = 0 (3.4.5)
fc
0 1 0
L0 0 0 1 J
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The coordinate transformation in transition from Sf to Sl is

represented by the matrix Mg as (Fig. 3.5).

i 0 0
cos¢p s1n¢p
[le] = —s1n¢p cos¢p 0 0 (3.4.6)
0 0 0
0 0 0 1

Therefore, the helical pinion surface can be represented in

coordinate system S5, as:

(P)

C

(P)

[rll = [Mlc][rc ] (3.4.7)

1 = M 1M 1Ix

together with Eg. (3.4.4). Substituting Eq. (3.4.5), (3.4.6) and

(3.3.9) into Eq. (3.4.7) we have

—(xéplr1¢p)cos¢p+yép)sin¢p.
(P) ; (P)
(x -r,¢_)sin¢ +y cosé
[r,] = c 1’ p-c P (3.4.8)
7 (P)
c
L 1 J

Egq. (3.4.8) and (3.4.4) represents the pinion tooth surface

where x(P), y(P) and z(P)
c c c

are expressed in Eg. (3.3.9).
Using the same approach, the unit normal pinion tooth

surface can be represented by Eqg. (3.4.9) and (3.4.4)

where n(P), n(P) and n(P) are expressed in Eq. (3.3.9)
CcX cy cz
(P) (P)_.
n.. cos¢p + ncy 31n¢p
_{_.(P)_. (P)
[n1] =|-N .4 51n¢p + ncy cos¢p (3.4.9)
(P)
n
cz
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It is clear that if we set Bp = 0, the pinion becomes spur
pinion. Therefore, crowning spur pinion using conic tool is only

a special case of crowning helical pinion.

3.5 Condition of Pinion Non-Undercutting

The problem of undercutting of the helical pinion tooth
surface by crowning is related with the appearance on the pinion
tooth surface of singular points. From differential geometry, it
is known that the surface point is singular if the surface normal
is equal to zero at such a point.

Litvin, proposed a method to determine a line on the tool
surface whose points will generate singular points on the surface
generated by the tool. This line designated by L (Fig. 3.9) must
be out of the working part of the tool surface to avoid
undercutting of the pinion by crowning.

The limiting line L of the tool surface is determined by the

following equations

(P) _ _(P)
I, 0 = Eg  (ujse) (3.5.1)
f 14 7 = 0 3.5.2
F(u , & , = 0 3.5.3
(dp_ o ¢p) ( )

Vector equation (3.5.1) represents the tool surface [see Eq.
(3.3.9)]: equation (3.5.2) is the equation of meshing [see Eq.

(3.4.4)] and equation (3.5.3) comes from the requirement of
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limiting line L as:

(P) (P)
BXC axc v(cl)
au 38 CcX
p j8
8Z(P) BZéP) (c1)
o Y ch =0 (3.5.4)
P P
afl afl afl 2%
au a8 ap 9
p p
where yéCl) is the relative velocity of the tool and generated

surface at generating point, represented if coordinate system

Sc+ Actually, we can write yéCI) as
ylod) o gle) _yh) (3.5.5)
~C ~C ~C
where yéc) is the velocity of the cutter and yél) is the velocity

of the pinion. From Fig. 2.2, we get

- ds
dt P
vie) =1 o = o (3.5.6)
0 0
(1) _ (p) ———
yc Ep X L. + ocol X Qp (3.5.7)
where
r1¢p
“, = 0 w OCOl = —r1 (3.5.8)
0
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Equations (3.5.6), (3.5.7) and (3.5.8) yield

- -

y((:p)
(cl) _(p)
Ve = X g + r1¢p w (3.5.9)
[ o |
(p) (p) .
where Xc and Yc are represented by equations 3.3.9.

Equation (3.5.9), (3.3.9), (3.4.3) and (3.5.4) yield

2 3 2
W o+ G + u*(WZ + XY + u*” X2 = 3.5.10
uy Y up(rl up( yA )] up 2 0 ( )

where

W = (B2E + AZE) + (BD-AF) I + sin3ep(A2F—BzF + 2ABD)

- COSBGP(ZAFB + BZD - A2D) - sinep(2A2F + ABD - AEI)

+ cosep [BEI + 2B2D + ABF]
. 2 . 2 2 .
X = [(AFsin a - CE)cosep + (ADsin"a — AEcoSs a)smep
+ (AFcosza - DC)] (Bcosep + Asinep + I)

Y = Dtgacos® D - Ftgasine o~ Ectga
Zz =

cosucos
u wn
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* d b
u. = - )
p cosa  cosy _cosy

A = cosucosB_ + siny _sinusing
p n p

B = cosacoswnsin8p+ sinasinwncosusinso— sinasinucossp

Cc = COSacoswnsinB
D = (COSasinwn - sinacoswncosu)cosa
E = (sinasinwn + COSacoswncosu)sina
F = COSacoswnsinu

G = Dcos® + E - F sine

I = ctga(cosasinwncosusinep-sinacoswnsian—cosasinucosBp)

Using Eq. (3.5.10) and taking it into account that %%— # 0, we
p

can represented the u_ as a function of eo. Undercutting will be

P
avoided if

d
cosa

(3.5.11)

up(ep) >

The analysis of Eg. (3.5.10) indicates that the inequality

(3.5.11) is satisfied if the condition of helical pinion non-
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undercutting by a regular rack cutter is satisfied.

3.6 Principal Directions and Curvatures of Tooth Surface

A simplified approach to determine principal directions and
curvatures of helical pinion has been proposed by Litvin (Litvin,
1968). The main idea is representing the principal directions
and curvatures of generated surface zl by the principal
directions and curvatures of generating surface zp.

Let us determine the principal directions of curvatures of
tool surface zp. The tool surface is a cone surface and its
principal directions coincide with the direction of the cone
generatrix and the direction that is perpendicular to the cone
generatrix.

The Rodrigue's formula (Eg. 3.6.1) can be used to obtain. the

principal curvature and directions

KI’II yr = -n. (3.6.1)
where yr is the velocity of a point that moves over a surface
and n. is the derivative of the surface unit normal n,
when n changes its direction due to the motion over the surface.

Using Eq. 3.6.1, the principal directions and curvatures of

cone surface L, can be expressed in coordinate system Sy as:
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e(P) ) agd . agd _ -ssne K(P) _ 1
<1 98 96 A § u_cosao
o) cos8 P
ar ar cosbsina
(P) _ "~d . ~d| _ - | (P) _
eII = ‘“a"u"' ‘a———u = { -COS(.I } ’ K'II =0 (306.2)
o) P sin®sina

The negative sign for « indicates that the curvature center is

I
located on the negative direction of the surface normal. The
principal curvatures are invariants with respect to the used
coordinate system. Whereas the principal direction will be
represented in coordinate system Sg as

(P) - (P)
(g1, 11l = gl llegller, 11lg (3.6.3)

where [Lcd] = [Lca][Lab][Lab,][Lb,d], 3 x 3 L matrices can be
obtained from corresponding 4 x 4 M matrices [see Eq. (3.3.4),
(3.3.5), (3.3.6) and (3.3.7)], Lg, is 3 x 3 unitary matrix (see
Fig. 3.5).

The determination of principal curvatures and directions for

the pinion tooth is based on the following equations (see Litvin,

1968)
2b..b
tan 20P1) - 13 23 (3.6.4)
b2 -b2 .~ (P (P)yy
237 P37 K I1 ’°33
2 2 _ (p)__(p)
(1) (1) _ P3Pz = (ef" =k 77)bgq -
b,,cos20

33
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(1) (L)Y _ (p) (p) 3 23
KII + KI = KI + KII + b (3.6.6)
33
where K§p), ﬁg) and §£p)’ ~£2) are the principal curvatures and
unit vector of principal directions of zp. K§1), Ki%) and
gil), e§i) are the principal curvatures and unit vectors of

(pl)

principal directions of Z .+ Angle ¢ is measured counter

clockwise from g£p) to gil)

b23 and b33 have been derived as shown in (Litvin 1968) but

(Fig. 3.10). The coefficient by,

modified for the case when a rack cutter generates a gear. The

expressions for by3s bp3, and b33 are as follows:

= | (@) _.(p) 1 (pl) (p)

byz| = | °1r * % K1 0 M g1
o (P) B _e (D) (p1) (p)

P23 2 S 0 K11 M © 2

(3.6.7)
= v(P) (pl), _ _(p), u(pl) (p),2

b33 = [E &)’p ~EY ] + [n ﬂp y ] KI (Y . eI )

<(2) (el (2))2 w’ (p1),
( ) > mj, Inr Kl
1p
(3.6.8)

where m

The vectors used in Eg. (3.6.7) and (3.6.8) are represent in
coordinate system Sg (Fig. 3.5) with .i.f’ i,f' ],Sf as 1its unit

vectors of axes. The expressions of the vectors in Eq. (3.6.7)
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and (3.6.8) are as follows (Fig. 3.5)

€
I\

w k (3.6.9)

is the angular velocity of the pinion being in meshing with the
rack cutter.

(p) _ _ :
\ = -wr, i, (3.6.10)

is the transfer velocity of a point on the rack cutter that
performs translational motion, ry is the radius of pinion

centrode.

[-yf —(y_+r))
(1) _ (p) _ = -
Yep = 85 X Lf e | X¢ - e rl¢p
L o 0
(3.6.11)
is the transfer velocity of the pinion
Yo
(pl) _ (p) _ (1) _ _
v =V \Y = xc+r1¢p (3.6.12)
0
is the "sliding" velocity - the velocity of a point of rack

cutter with respect to the same point of pinion.
Substituting Eq. (3.6.9), (3.6.10), (3.6.11), (3.6.12),
(3.6.2) and (3.3.9) into Eq. (3.6.7) and (3.6.8), then

substituting Eq. (3.6.7) and (3.6.8) into (3.6.4), (3.6.5) and
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(3.6.6), finally we <can obtain the principal directions and
curvatures from Eq. (3.6.4), (3.6.5), (3.6.6) and (3.6.2). Since
the expressions of tool surface and its principal direction are
complicated and tedious. It is difficult for us to write down
the expression of Ki%), Ki%), g£l) and gii). However, a
corresponding computer program is developed for determining the
principal directions and curvatures of any point of the pinion
surface using the algorithm discussed above.

The same approach can be used to determine the principal
directions and curvatures of regular helical gear. However, in

this case, the generating surface is a plane, and the problem

becomes simpler.

3.7 Contact Ellipse and Bearing Contact
The dimensions and orientation of the instantaneous contact
ellipse can be determined based on the equations proposed by

Litvin. (Litvin 1968). The input data for computation is:

(i) . (1) (12) (i) o
K1, 11 (i =1,2), e "» o and e, where 1,11 2re the principal
curvature of pinion tooth surface 21 and gear tooth

surface Zye eil) is the unit vector of the first principal

0(12) is the angle formed by the unit vectors

1) and gp7

elastic approach of the contacting surfaces. The bearing contact

direction of 21.

of principal directions e (Fig. 3.11) and e is the

is formed by a set of instantaneous contact ellipses that move
over the gear tooth surface in the process of meshing.
The axes of the <contact ellipse are directed along

the n axis and £ axis, respectively. The orientation of contact
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ellipse is determined by the angle a, which is angle
(1)
I L]

determined by a* and b* which are the half lengths of major and

between n and e (Fig. 3.11) The dimensions of ellipse are

minor axis of the ellipse respectively. The following equations

are used to determine o, a* and b*.

1 (1) (2)
A= 7 [K€ L Igl - 92|]
1 (1 2 3.7.1
B = 2 [Ke ) K é ) + Igl + gzl] ( )
glsin20(12)
w tan(2a) = (T2)
gl—g2c0s2o
where
R AR
_ (1) _ (1) - (2) _ (2)
91 T *1 ki1 ¢ 92 T 1 K11
and
e|ll/2 _ letl/2
a* = x b* = B (3.7.2)

3.8 Simulation of Meshing and Determination of Transmission
Errors
The simulation of meshing is a part of the computer aided
tooth contact analysis (TCA) program. The simulation of meshing
is based on equations that provide the continuous tangency of
contacting surfaces.

To simulate the meshing of a crowned helical pinion and
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reqular involute helical gear with misaligned axis, we will use
the following coordinate system, as shown in Fig. 3.11 and Fig.
3.12: (i) Sg is rigidly connected to the frame (ii) an
auxiliary coordinate system S, that is also rigidly connected to
the frame (iii) S, and S, are rigidly connected to the pinion and
the gear respectively. The relations between Sy and Sf and

between S5, and S, are shown in Fig. 3.12 and expressed by Mg} and

My, as
coséy sin¢1 0 0
Mf1 = -51n¢l cos¢1 0 0 (3.8.1)
0 0 1 0
0 0 0 1
cos ¢, —sin¢2 0 Q
Mh2 = sin¢2 cosé, 0 0 (3.8.2)
0 0 1 0
0 0 0 1

It is obvious that the rotation axis of the pinion and gear are
Zf(Zl) and Z,,(Z,) respectively. Therefore, the error of assembly
of gears can be simulated with orientation and 1location of
coordinate system S, with respect to Sg. Figure 3.13 shows the
orientation of S, and Sg. When the pinion and gear axes are
crossed (Fig. 3.13a) and intersected (Fig 3.13b) with operating
center distance C = 0¢0y . It must be emphasized that C can be
different from the nominal center distance given by C° = r{ + ro,
where r; and r, are the radii of the pinion and gear pitch
circles. The coordinate transformation from S, to Sg |is

represented by [Mgyl as follows (Fig. 3.13)
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-CosAy 0 sinAy 0
Mg, 1 =] O -1 0 C (3.8.3)
' sinAy 0 COSAY 0
0 0 0 1
where the gear axes are crossed as shown in Fig. 3.13a.
-1 0 0 0
M. ] = 0 —cosAf —81nAf C (3.8.4)
th 0 -sinA COosA 0
£ f
0 0 0 1

where the gear axes are intersected as shown in Fig. 3.13b.
The helical pinion tooth surface and its normal can be

expressed in coordinate system S¢ as:

[ce™'1 = Mgy 0rg] (3.8.5)

—
=i
()
ommed
|

[Lgql (n,;]

where Lg, is 3 x 3 matrix from Mg,. The helical gear tooth

surface and its normal can be expressed in coordinate system Sg

—
L}
+h
S
I

Mg 10, ,110x,] (3.8.6)

|

[Lep ) [Ty ] (1]

where th and Ly 2 is 3 x 3 matrices from Mg and Mypo.

For a helical gear (lefthand), I[rp] and [npl can be

represented as:
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coszw

n . .
- ESEE;— cos(¢G—wn)[-th1an+r2¢G] + rysing,

L

2
cos ¥

[r2] 83§$;_ sin(¢G—¢c)[—thian+r2¢G] + r2cos¢G

sinzs 5
)-r sin b, tg8

CcoOsB 2¢G
p

tG(cossp+s1n ¥ b |

(3.8.7)
—(coswncos8pcos¢G+51nwn51n¢G)

[n.] = coswncosBp51n¢G-31nwncos¢G

cosy sing
L wn 1Y)

where tg and ¢G are the surface parameters
and wc = arc tg(tgwn/cossp) is the pressure angle in the
transverse section of the gear tooth.

From Eq. (3.3.9), (3.4.4), (3.4.8), (3.8.5), (3.8.6) and

(3.8.7), it 1is known that. [substituting Eqg.(3.4.4) into(3.3.9)

to eliminate up]:
£t = pgt o0 i)
ngt = i Gegie e
EEZ) = EéZ)(¢G'tg'¢2) (3.8.8)
n{? = 0l (agitges,)

The contact of gear tooth surface is simulated in the TCA program

by the following equations
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(1) (2)

(1)

(2)
Qf (¢p'ep'¢l)

Bf = (¢GItGI¢2) (3'8010)

Vector equation (3.8.9) comes from the equality of the position
vectors at the contact point and provide three independent
equations whereas vector equation (3.8.10) <comes from the
equality of surface unit normals and provide only two independent
equations. Therefore, Eg.(3.8.9) and (3.8.10) yield five
independent scalar equations as follows:

fl(d)l, e I¢pl¢2ltGl¢G) = 0 (1 = 1121-0015) (3.8.11)

p
Equation system 3.8.11 is the expression in implicit form of
functions of one variable, 1i.e. LB Using theorem of implicit

function, we can obtain

. . . o =
considering at the neighborhood of P (¢1,ep,¢p,¢2,tG,¢G) where

P° satisfy Eq.(3.8.11) and

D(fl,fz,f3,f4,f5)

J =
Do, v 0,1 0,5rEqro0)

+ 0 (3.8.13)

The function of transmission error can be determined by
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3.9 Modification of Generating Surface zp

Using cone as a tool surface to generate the helical pinion
is good way to localize bearing contact. By using the TCA
program, it can be shown that the transmission errors caused by
gear misalignment are on a very low level. However, the shape of
the function of transmission errors is unfavorable as shown in
Fig. 3.1l4(a). This shape of the function of transmission errors
will result in interruption and interference with change of
meshing gear teeth. A more favorable shape of the function of
transmission errors is shown in Fig. 3.14(b). To obtain this
shape of transmission error function, we need to modify
generating surface Ep into a revolute surface. The reason for
using revolute surface is similar to the case for crowning a spur
pinion (see Litvin and Zhang, 1987).

The surface of revolution is generated by an arc circle with
radius p. The arc has a common normal with the cone generatrix
line at the point M (Fig. 3.15(a)). The circular arc and its

normal are expressed in an auxiliary coordinate system Se as

follows
X = [ s ( + B)- sal] + ( d - b )Sin
e P cos(a COsa Cosa COSwncosu o
= d e ) _ . B, 8
= (COSa coswncosu)SIn“ 2psin > sin(a + 2)
Y = plsin(a+f) - sina] + ———2--— cosa (3.9.1)
€ cosy cosu
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- b .8 8
- cosy _cosu cosa + 2psin 3 cos(a + 3)
Z =0
e
cos(a+B)
[ne] = | sin(a+8) (3.9.2)

0

The surface of revolution 1is generated by rotation of the
circular arc about the vy, axis and can be represented in
coordinate system Sq as follows

[rd] = [Lde][re] p [nd] = [Lde][re] (3.9.3)

where (Fig. 9.2(b))

cos?® 0 sin®
P
[Lde] = 0 1 0
-sing 0 coso
P b
Then we obtain
- da_ _ b L . B B8
Xq = [(COSa CoswnCOSu)SIna 2psin 251n(a + 2)]cosep
= ——-———p-——-—— I 1 _B_ ﬁ.
Yq COSwnCOSu + 2psin 5 cos{(a + 2)
- d _ b Lo . B B .
Zd [(cosa coswncosu)SIH“ 2psin 5 sin(a + 2)]51nep

36



cosepcos(a + B)
[nd] = | sin(a + B) (3.9.4)
sinepcos(a + B)

The installment of the generating surface in coordinate
system is the same as described in Section 3.3. The generated
crowning pinion tooth surface can be obtained using the same
approach as that described in section 3.4.

The meshing of gears using the crowning method described in
this section has been simulated by numerical methods. The

results of the investigation are illustrated with the following

example.

Given: number of pinion teeth N; = 20, number of gear teeth
Ny = 40, diametral pitch in normal section P, = 10 in1, pressure
angle in normal section v, o= 200, helical angle B8 = 15°, The

pinion tooth 1is crowned by revolute surface with generatrix
arc p = 30 in. The revolute surface is deviated from a cone
(comparing zp in figure 3.2(b) and (c)). The cone has half apex
angle o = 200 and bottom radius R = 10.6 in.

The topology of the pinion tooth surface provides a
parabolic type of predesigned transmission errors with d = 6 arc
seconds (Fig. 2.3 (a)) and a path contact that is directed across
the tooth surface (Fig. 3.1).

The 1influence of gear misalignment has been investigated
with the developed computer program and the results of
computation are represented in table 3.9.1 and 3.9.2 for crossed
and intersected gear axes, respectively. The misalignment of

gear axes 1s 5 arc minutes.

37



The results of computation show that the resulting function

of transmission errors is a parabolic one. Thus the linear

function of transmission errors that was caused by gear

misalignment has been absorbed by the predesigned parabolic

function. Fig. 3.14 show the results of transmissions errors for

crossed helical gears with (Table 3.9.1) and without (Table

3.4.1) crowning of the pinion.

TABLE 3.9.1 - TRANSMISSION ERRORS OF CROSSED HELICAL GEARS

4.

4.1

¢y

(dég) | -14 -11 -8 -5 -2 1 4
A¢2

(séc) |-4.99 |-1.51 | 0.65 | 1.51 | 1.05 |-0.75 |-3.87

TABLE 3.9.2 - TRANSMISSION ERRORS OF INTERSECTED HELICAL GEARS

’

(deg) | -11 -8 -5 -2 1 4 7
59,

(séc) |-6.15 |-2.72 |-0.60 | 0.20 |-0.32 |-21.9 |-5.40

Basic Concepts and Considerations

CROWNED HELICAL PINION WITH LONGITUDINAL PATH CONTACT

A longitudinal path of contact means that the gear tooth

surfaces are in contact at a point at every instant and the

instantaneous contact ellipse moves along but not across the
surface (Fig. 4.1(a)). It can be expected that this type of

contact provides improved conditions of 1lubrication. Until now
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only the Novikov-Wildhaber's gears could provide a longitudinal
path of contact. A disadvantage of this type of gearing is their
sensitivity to the change of the center distance and the axes
misalignment. The sensitivity to non-ideal orientation of the
meshing gears cause a higher level of gear noise in comparison
with regular involute helical gears. Litvin et al. (Litvin,
1985) proposed a compromisingbtype of non-conformal helical gears
that may be placed between regular helical gears and Novikov-
Wildhaber helical gears. The gears of the proposed gear train
are the combination of a regular involute helical gear and a
specially <crowned helical pinion. The 1investigation of
transmission errors for helical gears with a longitudinal path of
contact shows that their good bearing contact is accompanied with
an undesirable increased level of linear transmission errors.
The authors propose to compensate this disadvantage by a
predesigned parabolic function of transmission errors, that will
absorb the linear function of transmission errors (see section
2.3). The two following methods for derivation of the pinion

tooth surface will the modified topology will now be considered.

4.2 Method 1

Consider that two rigidly connected generating
surfaces, ZG and zp, are used for the generation of the gear and
the pinion, respectively (Fig. 4.1(b)). Surface Ig is a plane

and represents the surface of a regular rack-cutter;
surface §_ is a cylindrical surface whose cross-section is a

circular arc. We may imagine that while surfaces EG and Xp
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translate, as the pinion and the gear rotate about their axes.
To provide the predesigned parabolic function of transmission
errors it 1is necessary to observe the following transmission
functions by generation

N

v_ v _ r (_l - 2a¢p) = f(¢p) (4.2.1)

w

r, = const,
c 2 mp 2 N2

Here: e and w are the angular velocities of pinion and gear by

cutting; V is the velocity of the rack-cutter in translational

I

motion; N; and N, are the gear and pinion tooth numbers; ¢p is
the angle of rotation of the pinion by cutting. .The generated
gears will be in point contact at every instant and transform
rotation with the function

N

1 2 2w

05009) = [ ¢ ~ ady 0 < ¢y < w (4.2.2)

"2 1
This function relates the angles of rotation of the pinion and
the gear, ¢1 and ¢2, respectively, for one cycle of meshing.

The predesigned function of transmission errors is
2
Ap, = -adq (4.2.3)

It is evident that after differentiation of function (4.2.2) we
obtain that the gear ratio w2/m1 satisfies equation (4.2.1),
if ¢y and ¢, are used instead of ¢p and dge

To apply this method of generation in practice it 1is

necessary to vary the angular velocity of the pinion in the
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process of its generation that may be accomplished by a computer
controlled machine for cutting.

It is obvious that in this method the gear tooth surface is
kept as regular skew involute surface as shown in Eq.(2.4.1) and

(2.4.2) since its generating surface ©_, is a plane and generating

G

motion is V = u r Now, let wus derive the pinion tooth

G 27
surface equations.
The pinion generating surface Zp is a cylindrical surface

with circular arc as its cross section and can be represented in

an auxiliary coordinate system S, as follows: (see Fig. 4.2)

X Rlcos(y ta) - cosy ]
r, = Ya = R[sin(¢n+a) - sinwn] (4.2.4)
z
a t
p
1] 1

The unit surface normal is represented by

ax cos(wn+a)
Ba = nay = 31n(¢n+a) (4.2.5)
0
n
az

From coordinate system S, to S, the helical angle Bp is
introduced. Based on Fig. 3.8(d) and [Mca] as shown in Eqg.

(3.3.7), we have

=

x(p)'
c _ _ .
(o) y(p) R[c?s(wn+a) c?swn] t951n8p
Lo = c(p) = [Mca]ga = R[51n(wn+a) - 31n¢n]
z, R[cos(wn+a) - coswn] + tp51n6p
- i 1
(4.2.6)
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n(p)
cos(wn+a)cosB

CcX
(p) _ | . (p) - = | si
n. = nCy = [Lca]£a = °ln(wn+a) (4.2.7)
n(p) COS(¢n+a)Slan
cz
The generating process is described in the Fig. 3.5 where
Ny
S = r2¢p(ﬁ; - a¢p) (4.2.8)

The equation of meshing of the generating surface Zp and the

helical pinion tooth surface is given by:

B(p) . y(pl) - B(p) . (y(p) - y(l)) =0 (4.2.9)
In the system shown in Fig. 3.5, it can be found that
- ds
dt
y(p) I
0
o, (P)
T17¥¢
(1) _| _ (p)
v = S + xc Wy (4.2.10)
0

d¢

afg = o, and from Eg.(4.2.1) we have

Taking into account that

i Ny (p)
- _— p
r2(N2 2a¢p) + r1+yc

N

(pl) _ (p) _ (1) _ _«(p) 1
M =V v - Y% Xs +r2¢p(N2 a¢p)

0 :
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yép) + 2r2a¢

p
N
- | e (P) 1 .
= X, + r2¢p(N2 a¢p) oy (4.2.11)

0

Substituting Eq.(4.2.6), (4.2.7) and (4.2.11) into Eq. (4.2.9).

the equation of meshing can be obtained as:

COS(wn+a)cossp{ Rlsin(y_+a)-siny 1 + 2r2a¢p}

N
+ sin(wn+a){ —R[cos(wn+a)—coswn] - tsinBp }+ r2¢p(ﬁ§ - a¢p)

=0
(4.2.12)

Equation of meshing gives the relation among three variables,

that is, t a and ¢0. It is obvious that from Eq. 4.2.12, the

pl
equation of meshing can be rewritten as:

tp::couum¢n+aymuumﬁp){ R [sin(¢n+a)—sin¢n]+2r2a¢p}

N
o {—R[cos(¢n+a)—coswn] + r2¢p(ﬁi - a¢p)}

1
sing

+

(4.2.13)

The pinion tooth surface can be determined with the same approach
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as that described in the section 3.4 and represented by
Eq.(3.4.8) and (3.4.9) together with Eqg.(4.2.6),(4.2.7) and

(4.2.13).

4.3 Method 2
The derivation of the crowned pinion tooth surface is based
on two stages of synthesis. On the first stage it is assumed the

pinion tooth surface I, is exact conjugate surface to the gear

1
tooth surface which is regular skew involute surface under the
condition that the rotation transformed by the pinion and the
gear is described in Eq.(4.2.2) with predesigned parabolic
function of transmission errors.

On the second stage of synthesis it is necessary to localize
the bearing contact and substitute the instantaneous line contact

by a point contact. This becomes possible if the pinion tooth

surface will be deviated as it is shown in Fig. 4.1(c). Only a

narrow strip, L, will be kept while I will be changed into z}.
The deviation of 21 with respect to ¥, may be accomplished in

various ways, for instance, in such a way, that the cross-section
of zi is only a circular arc. The generation of zi requires a
computer controlled machine to relate the motions of the tool

surface and the being generated pinion surface 21 The tool

1.

surface (it may be only a plane) and zl will be in point contact

1
in the process of generation.

Now, let us derive the pinion tooth surface equations based
on the two stages discussed above. First, we can derive the

intermediate pinion tooth surface ¥. as that generated by gear

1
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tooth surface I The relation of rotation for the pinion and

10
the gear is shown in Eqg.(4.2.2). The gear tooth surface I, and

its unit normal are shown in Eq.(2.4.3) and (2.4.4).

2 in the fixed

coordinate system Sg in Fig. 4.3, it is necessary to transform

[r2] and [nj,] into [réz)] and [néz)] as:

To represent the gear tooth surface ¢

[ce 71 = (Mg, (]
(2), _
—cos¢2 sin¢2 0 0
where [Mf2] = —sin¢2 -cos¢2 0 0
0 0 1 C
0 0 0 1

Substituting Eq.(2.4.3) and(2.4.4) into Eq.(4.3.1) we obtain:

coszqan . .
r 335?;— cos(¢G-¢c—¢2)[-thlnsp+r2¢G]—r2s1n(¢G-¢2)
(2)
Xg Cos 2
(2)7 o {02 ol =m0 cog (6 =0 =6.) [=t.Sing +T.6.]-T.5in(6.~5.)
[rg "1 Yool Cos v, —°'% Vo ") [mtgSInB 41,051 -T ;8106576
z
f
- ) t2c0582(1+sin P+ 28 )=r, é.sin ¢ _tgs
G p n"9 P 27G n-9 jo)
I 1
(4.3.2)
n(z) cosy_cosB_cos{¢.—¢,)+siny_sin(é.=¢,)
£x n P G "2 n G "2
[néz)] = néj) = -coswncosepsin(¢G-¢2)+sinwncos(¢G-¢2)
(2) \
ne. coswns1n8p
(4.3.3)
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The generating process is shown in Fig. 4.3
where ¢l and ¢2 is given by Eq. (4.2.2). The equation of meshing

of the generating surface 22 and generated surface 21 is

described as:

pt2) g2 2 (2 (20 gty (4.3.4)

~ ~

(21)

The relative velocity V can be expressed as

(21) _ ,(2) _ (1) _ Yoo -
4 =y v =@y, X (0,0) +re) - wy) X Ig
(4.3.5)
where
0 0 0 N
"3(1) = 0 “’17 E),(z) = 0 u)2 = 0 wl ['[\Tl' - 2a¢1]
-1 1 1 2
[ (2)
0 f
=== _ | _ . _ (2) .
0201 = =©| 7 £ 7| Yt '
0 (2)
A
and the relation Dbetween wq and w, is obtained by taking

derivative of Eq. (4.2.2). By rearranging and simplifying Eq.

(4.3.5), we obtain

y(2)
(21) fz) Ny Ny
v Xf 4 [N—l- + l—2a¢l] +]0 ml[-ﬂ]—z' - 2a¢1]
0

(4.3.6)

Substituting Eq.(4.3.6) (4.3.2) and (4.3.3) into Eg.(4.3.4) and
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simplifying it, we can obtain:

2a¢1
COS(¢G-¢2"U}C) = COS\bc[l— “—ﬁ-;/—N—z'-] (4.3.7)

where wc is the pressure angle in transverse section of helical
gear. Equation 4.3.7 is the equation of meshing which describes

the relation between ¢G and ¢2. We can rearrange Eq. 4.3.7 as:

Ny

= R .2
¢ = ¢, + A($y) = N, ¢1-asy + A (o)) (4.3.8)

2a¢l
where A(¢1) = wc-arccos coswc[l- —T;§I7—§;—]

The pinion tooth surface I and its normal can be determined

2)

by transforming gé into coordinate system S, as

[le][EEZ)] (4.3.9)

_ (2)
{n].] - [Llf][nf

[rll

]

cos¢, —sincb1 0 0

where [le] = 51n¢1 cos¢1 0 0
0 0 1 0

0 0 0 1

Substituting (4.3.2) (4.3.3) into Eq.(4.3.9), we can get

xl'

¥,

[rll

- (4.3.10)

1]
3

(n
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where

coszwn
X = EBEE;_ cos(¢l+wc—x(¢1))[-tG51an+r2¢G]

+ rzsin(¢l-x(¢l)) - Csin¢1

coszw
= —..____O..... 1 — - 1
Y1 = cosv sin(¢+v -2 (¢;) 1 th1nsp+r2¢G]

- rzcos(¢1—x(¢l)) + Ccos¢1

_ .2 2 _ . 2
Z1 = thossp(1+51n ¢n+g Bp) ry6g Sin wntgsp
coswncosgp
iy = coswc cos(¢1-x(¢1)+wc)
coswncoss0
nly = COSWC - 51n(¢1-x(¢1)+¢c)
n,, = coswn31n3

Equations (4.3.10), (4.3.8) and (4.2.2) represent pinion

tooth surface I, in coordinate system S;. But ] is only an
intermediate surface. Now we come to the second stage, that is,
to deviate R into zi. The surface z} must satisfy such

condition that when it is in mesh with gear tooth

surface r, without misalignment, the contact path will be in

2
longitudinal direction. The surface z} will be formed in two
steps: (i) the contact path curve in r, is chosen and kept.

1

(ii) the profile of surface 1, in transverse section is replaced

1
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by a smaller circular arc attached on the L in such a way that

the original normal of £, along L is kept.

1
To choose curve L on 21 we could define that the contact
path on the gear tooth surface is in the middle of the tooth,

that is

(4.3.11)

where r = sz + Yg is the distance of the surface point to gear
axis in transverse section. Substituting Egq. (2.4.3) into Eq.
(4.3.10) and simplyfing it, we can obtain the relation of surface

parameter along the contact path as

Applying Eq.(4.3.12) to Eq.(4.3.10), we can find the curve L on

pinion tooth surface i, as:

1

ted
]

1 rzsin(¢1—x(¢1)) - Csin¢l

y, = —rzcos(¢1—x(¢l)) + Ccos¢l

(E]—l- - a 2 + A (4.)) (4.3.13)
v, % a1 % 3.

N
1]

1 rzctgsp

where the ¢ is the curve parameter and A(¢l) is described 1in

E‘qo (4.3.8).
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Now we should attach the circular arc to the L described by
Eq. (4.3.13) in the transverse section to form new surface zi.
Also the tangent of the arc at the point on the line L must be

perpendicular to the normal of ¢, described in Eq. (4.3.10). As

1

. . . 1
shown in Fig. 4.4, the equation of new surface ¢

are:
1

xi = Xy + r[cos(pu+a)-cosyu]
yi = yl + R[sin(u+a)=-sinu] (4.3.14)
21 7 %

where u = ¢1 - A(¢1)+¢c. Equation (4.3.14) describes the new
pinion surface Ei. In Eq. (4.3.14) when o = 0, the designed

contact path L is obtained.

4.4 Discussion and Example

In section 4.2 and 4.3, two methods have been presented with
derivation of the equations of pinion tooth surface. Comparing
the two methods for the generation of the pinion tooth surface,
it may be concluded that both provide a 1localized bearing
contact, a longitudinal path of contact and predesigned parabolic
function of transmission errors. The difference between these
methods 1is that the tool and pinion tooth surfaces are in 1line
contact by applying the first method for generation and in point
contact by the second one. The disadvantage of both methods for

crowning of the pinion is that the transmission errors caused by
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gear misalignment are large and it is necessary to envision a
high level of the predesigned parabolic function for the
absorption of transmission errors. This is illustrated with the
following example (the algorithms for simulation have been
discussed in Section 3.8).

Given (the data is from ref. 3): pinion tooth number Ny, =
12, gear tooth number N, = 94; diametral pitch in normal section
Pn = 2 in'l; pressure angle in normal section wn = 300; helical
angle B = 150,

The pinion tooth surface is a crowned surface whose cross-
section is an arc of a circle of the radius 0.3584in. The
predesigned parabolic function is of the level d = 25 arc seconds
(Fig. 2.3(a)).

Consider now that the axes of the gear and the pinion are
crossed and the crossing angle is 3 arc minutes. The computer
program for the simulation of meshing provides the data of
transmission errors that is given in Table 4.1. The data of
Table 4.1 shows that the resulting function of transmission
errors is a parabolic function. Thus, the 1linear function of
transmission errors caused by misalignment of gear axes has been
absorbed by the predesigned parabolic function.

Table 4.2 represents the transmission errors for the same
helical gears for the case when the gear axes are intersected and
form an angle of 3 arc minutes. The resulting function of
transmission errors is again a parabolic function with the level
d = 26.2 arc seconds. The relatively high level of transmission

errors is the price that must be paid for the longitudinal path
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of contact. However, the proposed topology of the pinion tooth
surface provides a reduction of the level of gear noise since the
linear function of transmission errors 1is substituted by a

parabolic function.

TABLE 4.1 TRANSMISSION ERRORS FOR CROSSED HELICAL GEARS

3

(ddq) ~23 ~18 | -13 | -8 -3 2 7
A¢2

(se) |-17.94 {-3.06 | 5.64| 8.23 | 4.84 | -4.39 | -19.37

TABLE 4.2 TRANSMISSION ERRORS OF INTERSECTED HELICAL GEARS

. -
(d%g) -20 -15 -10 -5 0 5 10
5, B -

(seé) -23.06 [-8.50 | 0.15| 2.96 | 0.00 | -8.66 | -22.95

5. DEFORMATION OF HELICAL GEAR SHAFT
5.1 Basic Concepts and Considerations

Deformation of gear shafts always exists when the gears are
used to transmit power. This 1is because under the load the
force applied on gear tooth surface is transferred to the gear
shaft and the shaft is not rigid body. It can be proven that the
deformation of gear shaft results in the same effects as
misalignment induced by assembly. The misalignment from assembly
could be reduced to as 1little as possible. But the shaft

deformation 1is inevitable. Fortunately, all the transmission
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errors and shift of bearing contact due to deformation of gear
shaft can be compensated by crowning helical pinion tooth surface

with the methods discussed in Chapters 3 and 4.

5.2 Force Applied on Gear Shaft

When the pinion and gear mesh a force, between their tooth
surfaces, is applied on the contact point. The direction of the
force is along the normal of the contact point. For the case of
regular helical gears, in the fixed coordinate system Sg as
described in section 3.8, the force direction is a constant since
the normal of the contact point is a constant (Litvin, 1968) and
can be expressed as:

cosy cossp]

n_ = sinwn (5.2.1)

~C
n p

As shown in Fig. 5.1, the force applied on the pinion tooth

surface is:

cosy cossp

coswn sinsg

coswn cosBp

F = -F 0

]
|
|

where F

~

-

sin
wn

0 coswn sinsp
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Ft is called as transverse force since it is applied on the

~

transverse section of the pinion and the gear and F_ is called as

~

axial force. Transverse force F_ is always in tangency with the

t
base circle in tranverse section. Therefore, if the torque
transferred by the gears is constant, the magnitude of transverse
force is also constant. So is the magnitude of axial force since
it has certain ratio with transverse force.

Both transverse force and axial force can be transferred to
the axis of gear shaft with resultant
torque (designated by E; and E;) . For the transverse force, the
resultant torque is the torque transferred by the gear. For the
axial force, the resultant torque 1is balanced by the support
bearings. Assuming the force is applied on the middle section of
the gear, after the force is decomposed and transferred to the
axis of gear shaft as shown in Fig. 5.1 (b), both the transverse
force and axial force will act on the origin of coordinate system
Sf. Actually, both forces will cause deformation of the shaft.

But since the axial force only cause very small tension or

compression of the shaft, it can be neglected.

5.3 Modelling of Shaft Deformation

As shown in Fig. 5.2, the transverse force ?t is applied on
the point A which is the center of the shaft corresponding to the
pinion or gear middle cross section. Under the force, the
deformation of the shaft is composed of two parts, that is,
deflection of shaft at the point A designated by V. and rotation

p
of the shaft cross section with A as a center designated by
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Ap. The value Vb and Ap depend on the magnitude of transverse
force, geometry and material of shaft and the way how the shaft
is supported. (Timoshenko 1973).

Now, let us model the deformation of the helical pinion
shaft. For convenience and consistency with the previous
chapters, We cstablish our coordinate system as follows:

(1) As shown in Fig. 5.3a S¢ is a fixed coordinate system and
rigidly connected to the frame. Sa is an auxiliary coordinate

system with the Ya axis coincident with the direction of
transverse force. The angle wc is the pressure angle in the
transverse section of helical gear. The matrix [Mfa] can

transfer vector from S, to S¢ and is expressed as:

sinwc cosy 0 0
[Mfa] = —coswc s1mpc 0 0 (5.3.1)
0 0 1 0
| 0 0 0 1 ]

(2) Coordinate system Sg; and S, [Fig. 5.3(b)] are connected to
the axis of pinion shaft. Without deformation, S¢' and S ' are
coincident with Sy and S, respectively. The matrix M '¢'] can

transfer vector from Sg' to S+ and is expressed as:

51nwc -coswc 0 0
[Ma'f'] = coswc 51nwc 0 0 (5.3.2)
0 0 1 0
i 0 0 0 1 ]

(3) Coordinate systems S, and S,' are not coincident when shaft

deformation occurs. As shown in Fig. 5.2, their relation can be
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expressed as:

(4)

be

vector r

aa'

o O O
0]
[N
3
>

(5.3.3)

As described in previous chapter, pinion tooth surface can

expressed

1

shown in Fig.

with

in coordinate
its normal n

5.3(c) and expressed as:

cos¢,

—sincbl
0
0

lo

sin¢1

cos¢,

0
0

—

iy

systems

]

as a

position

The relation of Sl and Sf' is

(5.3.4)

After the coordinate systems are established, it is easy to find

that the

matrix mff' as:

[

o

Mego

1= [Mfa

]

™M__,1

aa'

2
l+cos wc(cosxp-l)

sinwccoswc(cosxo-l) ’ 1+sin2wc(cosk

sin)i_cosy
p c

0

,sinwccoswc(cosxp—l)

4

Ma'f'

deformation of the pinion

shaft can be modelled by

P

sini_siny
P c

0
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4

-coswcsinxp

—sinwcsinxp

COoSs A

7 —VpCOS Ibc
’ --vp51n1pc
» 0

1

(5.3.5)




Since Ap is very small angle, it is reasonable to use Ap instead
of simp and one instead of cosxp. Therefore, Eq. (5.3.5) can be

written as:

1 0 -\ _cosy -V _cosvy
p ¢ p cC
[Mff,] = 0 .1 —Ap51nwc ' -Vp51nwc
Apcoswc, A951nwc, 1 0
0 0 0 1
(5.3.6)

Also, for the gear shaft, the coordinate systems SG' Sgur

Sb’ and Sb' are used instead of Sgs Sf', Sa and Sa',

, and V_, are used instead of X and V .
G G o) P

same ideas, the deformation of gear shaft can be modelled by

and A Then, using the

. . .
matrix [maa ] as:

i 2 : . |
l4+cos wc(cosxG—l) ' 51nwccos¢c(cosxG—1), cos¢c51nAG ' VGcoswc
1 .2 _ .
MGG'" 51n¢ccoswc(cosAG 1), 1l+sin wc(cosAG 1 cos¢051nAG ' VCcoswc
—s1nchoswc ’ —51nAG51nwc ' cosAG P 0
- 0 14 0 I 0 ’ l
(5.3.7)
Or considering that AG is very small angle:
1 0 +AGcos¢c VGcoswc
[MGG'] = 0 1 +AG51n¢c VG51nwc
- AGcoswc -AG51n¢C 1 0
i 0 0 0 1 i
(5.3.8)

It must be emphasized that the gear tooth surfaces are expressed
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in coordinate system S,. The relation of S; and S¢' is shown in

Fig. 5.4 and expressed as:

—-cos¢2 s1n¢2 0 0
[MG'2] = —51n¢2 -cos¢2 0 0 (5.3.9)
0 0 1 0
L 0 0 0 1 ]

Also as shown in Fig. 5.5, the coordinate system Sg and Sg are
not coincident. There is a center distance C between their

origins. Therefore Meg is represented as:

(5.3.10)

O = O O
= o O O

0
1
0
0

o O O =

Now it is easy to simulate the performance of the gears with the
deformation of their shafts. Assuming, there is a helical pinion
in coordinate system S; represented by position vector r, and
normal vector 04 and a helical gear in coordinate system S,

represented by r, and n

L, n,, we can write the tooth contact equation

as:

Mee,d rg,q) [gyl= Mo ] M,] Mg,,] (g, (5.3.11)
[Lee ] (Lo, ) [xy0= (Lol [Lgg ] (Lo, (ny)

where L matrices are 3 x 3 matrices from corresponding 4 x 4 M
matrices, crossing 4th row and 4th column and M matrices can be
found in this section. Applying the same ideas discussed in
Chapter 2 and used in section 3.8, we can find the transmission

errors and the shift of the bearing contact by computer aided
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simulation.

It is interesting to mention that the deformation of the
shaft can be expressed as a combination of misalignment with
crossing axes, misalignment with intersecting axes, and change of

the center distance. This is because, for example

1 0 —Apcoswc —VpcoswC
[Mff,]= 0 1 -Aps1n¢c —Vp31n¢c
A _cosvy A _siny 1 0
p c p c
| 0 0 0 1 )
i 1 0 -\_cosy 0l 1 0 0 0
P c
= 0 1 0 0 1 ~A_siny 0
P c
A coswc 0 0 A 51nwc 1 0
i 0 0 0 1 {10 0 0 1
1 0 0 -V_cosy
P c
0 1 0 =V _siny (5.3.12)
o} c
0 0 1 0
0 0 0 1

where the three decomposed matrices are represented by the matrix
for crossing axis with small angle Apcos¢c, matrix for
intersecting axis with small angle Apsinwc, and matrix for axis

displacement.

5.4 Example and Discussion

The results of investigation in this chapter are illustrated
with the following example. Given: number of pinion tooth
Ny= 20, number of gear tooth Ny = 40, diametral pitch in normal

section P, = 10 in~1, pressure angle in normal
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section wn = 200, helical angle 8 = 15%, gear tooth length L =
5/Pn. Also assume deformation values Vp = Vg = 0.0125 in,

Ap = AG = 2 min. The computer program for simulation provides
the data of transmission errors in Table 5.1

From Table 5.1, it is known that the transmission errors due
to gear shaft deformation is an approximately linear function for
regular skew involute pinion and gear. Similar to the case of
gear axis misalignment, the 1linear function of transmission
errors can be absorbed by predesigned parabolic function of

transmission errors that is obtained by crowning helical pinion

tooth surface.

TABLE 5.1 TRANSMISSION ERRORS FOR HELICAL GEAR WITH
DEFORMED SHAFT

)
(deq) 3 6 9 12 15 8 21

Ad
(sgc) 1.38 [3.16 [4.74 6.32 7.90 9.48| 11.06

6. CONCLUSION

Several methods of crowning helical pinion tooth surface
have been developed. The modified pinion tooth surface can
provide predesigned parabolic function of transmission errors
that are able to absorb linear function of transmission errors
induced by misalignment. Also, the modified pinion tooth surface
can 1improve the bearing contact. Principles of computer aided
simulation of meshing, contact, and respective computer programs

have also been developed. The numerical results of examples of
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cronwed helical pinion in mesh with regqular helical gear show
that the ideas of crowning are useful to get favourable bearing
contact and allowable transmission errors. But the synthesis of
pinion tooth surface should be based on a compromise between the
requirements of transmission errors and the patterns of the

bearing contact.
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FIG. 3.1 Contact Ellipses on the Pinion Tooth Surface
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FIG. 3.4 Generating Tool Surfaces
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FIG. 3.5 Coordinate Systems for Generating Pinion and
Gear Simultaneously
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FIG. 3.7 Cone Surface
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FIG. 3.11 Orientation of Contact Ellipse
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FIG. 5.2 Shaft Deflection
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{
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PROGRAM I
SURFACE OF HELICAL PINION GENERATED BY CONE CUTTER

AUTHORS: FAYDOR LITVIN
JIAO ZHANG
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% % % kS ¥ % %

Kk dekdkdkdedk ek hdkdddhhhhhhdhohhhhdbdekhhhdkhhdekhhdhkhdhdkk

PURPOSE

THIS PROGRAM IS USED TO CALCULATE THE SURFACE OF A HELICAL PINION
WHICH IS GENERATED BY CONE CUTTER

NOTE

THIS PROGRAME IS WRITTEN IN FORTRAN 77. IT CAN BE COMPILED BY V
COMPILE IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM

IMPLICIT REAL*8(A-H,0-Z)

DOUBLE PRECISION KSIN,MU,KSIC,MUO

DIMENSION X(100),Y(100),ERROR (100),FEEREC(100),UREC(100),
+ THETAR (100)

DEFINE PARAMETERS USED BY PROGRAMS

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE INPUT AND OUTPUT
DEVICES
IN=5
LP=6
(2) NDBUG IS USE TO CONTROL THE AUXILIARY OUTPUT FOR DEBUGGING
NDBUG=1

(3) NSOLVE IS THE UPPER LIMITATION OF REPEATATION FOR SOLVING
NONLINEAR EQUTIONS;
EPSI IS THE CLEARANCE OF FUNCTION VALUES WHEN THE FUNCTIONS
IS CONSIDERED AS SOLVED (ALL FUNTIONS HAVE FORMS OF F(X)=0);
DELTA IS THE CLERANCE OF VARIABLE INCREMENT WHEN FUNCTION IS
SOLVED
NC, EPSI AND DELTA MAY BE CHANGED WHEN SOLUTIONS ARE DIVERGENT
OR LESS ACCURATE
NSOLVE=100
DELTA=1.D-15
EPSI=1.D-15

(4) OTHER PARAMETERS (DON'T CHANGE)
DR=DATAN (1.D0) /45.D0

DEFINE INPUT PARAMTERS OF PROBLEM (USE INCH AS UNIT OF LENGTH)
(1) PINION AND GEAR: PN=DIAMETRAL PITCH; N1=PINION TOOTH NUMBER;
KSIN=PRESSURE ANGLE IN NORMAL SECTION (DEGREE);:

BETAP=HELIX ANGLE (DEGREE);
HD=HEIGHT OF DEDENDUM OF PINION;
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HA=HEIRHT OF ADDENDUM OF PINION
ZCOE=COEFFICIENT OF PINION TOOTH LENGTH (THE LENGTH= ZCOE/PN)

PN=10.DO0

N1=20

KSIN=20.DO*DR

BETAP=20.D0*DR

HD=1.DO/PN

HA=1.DO/PN

ZCOE=10.

(2) TOOL: ALPHA=HALF OF CONE VERTEX ANGLE (DEGREE) ;

RC=RADIUS OF BOTTOM CIRCLE OF CONE;
MU=TILT ANGLE TO INSTALL PINION-CUTTING TOOL

ALP=80.DO*DR

MUO=DATAN (DSIN (KSIN) *DTAN (BETAP) )

MU=1. *MUO

RC=1.D0O

(3) OUTPUT:

NZ=NO. OF CROSS SECTIONS WHERE PINION PROFILE IS SIMULATED;
NU=NO. OF MAXIMUM POINTS USED FOR SIMULATE PINION PROFILE
UIN=INCREMENT OF PINION TOOTH SURFACE COORDINATE U

NzZ=21

NU=61

UIN=2.5D0*CH/ (NU-1)

DESCRIPTION OF OUTPUT VARIABLES

Z1=DISTANCE BETWEEN CROSS SECTION CONSIDERED AND MIDDLE CROSS
SECTION

NO=OUTPUT NO.

U=TOOL SURFACE COORDINATE

THETA=TOOL SURFACE COORDINATE

FEE=PINION TOOTH SURFACE GENERATION PARAMETER

X1=X COORDINATE OF PINION PROFILE

Y1=Y COORDINATE OF PINION PROFILE

R1=RADIUS OF PINION PROFILE

VSH=AVERAGE DEVIATION SHIFT OF CROSS SECTION PROFILE FROM PROFILE

OF GENERAL PINION (INVOLUTE CURVE)

VPE=MAXIMUM DEVIATION OF CROSS SECTION PROFILE FROM INVOLUTE CURVE

VSD=STANDARD DEVIATION OF CROSS SECTION PROFILE FROM INVOLUTE
CURVE

THE PROGRAM IS WRITTEN BY JIAO ZHANG
SK=DSIN (KSIN)
CK=DCOS (KSIN)
SB=DSIN (BETAP)
CB=DCOS (BETAP)
SM=DSIN (MU)

CM=DCOS (MU)

SA=DSIN (ALPHA)
CA=DCOS (ALPHA)
KSIC=DATAN (SK/CK/CB)
CKC=DCOS (KSIC)
SKC=DSIN(KSIC)
PT=PN*CB
RP=N1/2./PT
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RB=RP*DCOS (KSIC)

RA=RP+HA

CL=RC/SA

CH=HD/CK/CM

Al=CA*CK*CB+SA*SK*CM*CB+SA*SM*SB

A2=SK*SM*CB-CM*SB

A3=CA*SK*CM*CB-SA*CK*CB+CA*SM*SB

A4=SK*CM*CB+SM*SB

B1=CA*SK-SA*CK*CM

B2=CK*SM

B3=SA*SK+CA*CK*CM

B4=CK*CM

C1=CA*CK*SB+SA*SK*CM*SB~SA*SM*CB

C2=SK*SM*SB+CM*CB

C3=CA*SK*CM*SB-SA*CK*SB-CA*SM*CB

C4=—SK*CM*SB+SM*CB

D1=CM*CB+SK*SM*SB

D2=SA*SM*CB-SB* (CA*CK+SA*SK*CM)

D3=CA*CK*SB

D4=CA* (CA*SK-SA*CK*CM)

D5=SA* (SA*SK+CA*CK*CM)

D6=CA*CK*SM

DO 5 1=1,NZ

Z1=-ZCOE/PN/2.+ZCOE/PN*FLOAT (I-1) /FLOAT (NZ-1)

FEEO=Z1*SB/CB/RP

CF0=DCOS (FEEO)

SFO=DSIN (FEEO)

R1=RP

ERR=0.

NP=0

DO 15 J=1,NU

IF (R1.GT.RA.AND.J.GT.1l) GOTO 55

U=CL-UIN*FLOAT (J-1)

TEMP1=(Z1- (CL-CH) *C4-U*CA*C3) /U/SA/DSQRT (C1*C1+C2*C2)

TEMP2=DARSIN(C1/DSQRT(C1*C1+C2*C2))

TEMP3=DARSIN (TEMP1)

THETA=TEMP3-TEMP2

CT=DCOS (THETA)

ST=DSIN (THETA)

XC=U*SA* (CT*A1+ST*A2) +U*CA*A3~ (CL-CH) *A4

YC=U*SA* (CT*B1-ST*B2)-U*CA*B3+ (CL-CH) *B4&

FEE= (U* (CT*D1+ST*D2) - (CL-CH) * ((CT*CA*CA+SA*SA) *D1-ST*D3) ) /RP/
(CT*D4+D5-ST*D6)

CF=DCOS (FEE)

SF=DSIN (FEE)

X1=XC*CF+YC*SF-RP*FEE*CF+RP*SF

Y1=-XC*SF+YC*CF+RP*FEE*SF+RP*CF

R1=DSQRT (X1*X1+Y1*Y1)

IF (R1.LT.RB) GOTO 15

NP=NP+1

X (NP) =X1

Y (NP) =Y1

FEEREC (NP) =FEE

UREC (NP) =U
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25
65

C 110

15
55

35

10

20
45

SENTR
C FI

THETAR (NP) =THETA

XE=X1*CFO+Y1*SFO

YE=-X1*SFO+Y1*CFO

YS=YE

FEET=FEE+FEEO

DO 25 K=1,NSOLVE
W=RP*FEET*CKC*DSIN (FEET-KSIC) +RP*DCOS (FEET) -YS
DWDF=-RP*SKC*DCOS (FEET-KSIC) +RP*FEET*CK*DCOS (FEET-KSIC)
DF=—W/DWDF

IF (DABS(W).LT.EPSI.AND.DABS (DF).LT.DELTA) GOTO 65
FEET=FEET+DF

CONTINUE

CONTINUE
XS=—RP*FEET*CKC*DCOS (FEET-KSIC) +RP*DSIN (FEET)
ERROR (NP) =XE-XS

WRITE (LP,110) K,W,DF,ERROR(NP),FEET,FEE+FEEO

FORMAT (1X,'K=',I5,5X,'w=',D15.7,5X,'DF=',D15.7,D15.7,2D25.17)
ERR=ERR+ERROR (NP)

CONTINUE

VSH=~ERR/FLOAT (NP)

VPE=0.

VSD=0.

DO 35 J=1,NP

ETEMP=ERROR (J) +VSH

IF (DABS (ETEMP) ,GT.VPE) VPE=DABS (ETEMP)
VSD=VSD+ETEMP**2

CONTINUE

VSD=DSQRT (VSD/FLOAT (NP))

WRITE (LP,10) Zz1 ,VSH,VPE,VSD

FORMAT (1H1,///'Z1=",F15.7,5X,'VSH="',F15.7,5X, 'VPE=',F15.7,5X,
+ 'vsp',D15.7,5X/2X,'NO. ', 7X,'U', 14X, 'THETA', 10X, 'FEE', 12X,
+ 'X1',13%,'Y1',13X, 'R1',13X, 'ERROR ")

DO 45 J=1,NP

R1=DSQRT (X (J) **2+Y (J) **2)
ETEMP=ERROR (J) +VSH

WRITE (LP,20) J,UREC(J),THETAR(J),FEEREC(J),X(J),Y(J) ,R1,ETEMP
FORMAT (2X,I12,2X,7F15.7)

CONTINUE

CONTINUE

STOP

END

Y
ND AUXILIARY VALUES FOR CALCULATION
RP=FLOAT (N1) /2.DO/PN

CL=RC/DSIN (ALP)

D=CL*DCOS (ALP)

Al1=CL-HDC/DCOS (RKS)

RPU=RP+HAC

DO 5 I=1,NL

Z=FLOAT (I-1) *ZI

YY=D-Z/DTAN (ALP)

WRITE (LP,10) Z

10 FORMAT (1H1/1X,'z1=',6F15.7/1X,'NO',10X,'Y1',13X,'XP',13X,"'YP',

+ 13X, 'R1',13X, 'FEE')
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CALCULATE THE PROPILE OF THE SURFACE CUT BY PLANE Z=CONST

KKK=0

DO 15 J=1,N

Y1=YY*FLOAT (J-1) /FLOAT (N-1)

F=DSQRT (1.-(Z/ (D-Y1) /DTAN (ALP) ) **2)

FEE= ((D-Y1) *F/DCOS (ALP) ~A1* (F*DCOS (ALP) *DCOS (ALP) +DSIN (ALP) *DSIN(

+  ALP))) /RP/ (DSIN(ALP) *DCOS (ALP-RKS) ~F*DCOS (ALP) *DSIN (ALP-RKS))

XP(I,J)=(D—Yl)*(DTAN(ALP)*F*Dcos(ALP—RKS+FEE)-DSIN(ALP-RKS+FEE))

+ +A1*DSIN (FEE-RKS) -RP*FEE*DCOQS (FEE) +RP*DSIN (FEE)

YP(I,J)=-(D—Yl)*(DTAN(ALP)*F*DSIN(ALP-RKS+FEE)+DCOS(ALP-RKS+FEE))

+ +A1*DCOS (FEE-RKS) +RP*FEE*DS IN (FEE) +RP*DCOS (FEE)

20

15
30

R1=DSQRT (XP (I,J) **2+YP (I, J) **2)

IF (R1.GT.RPU) THEN

J1=3-1
XP(I,1)=XP(1,JJ)+(XP(I,T)-XP(1,3J))/(R1-R1TEMP) * (RPU-R1TEMP)
YP(1,3)=YP(I,I)+(YP(I,J)-YP(1,JJ))/(R1I-R1TEMP) * (RPU-R1TEMP)
FEE=FEETEM+ (FEE-FEETEM) / (R1-R1TEMP) * (RPU-R1TEMP)
Y1=Y1TEM+ (Y1-Y1TEM) / (R1-R1TEMP) * (RPU-R1TEMP)
R1=DSQRT (XP (I, J) **2+YP (I,J)**2)

KKK=1

END IF

WRITE (LP,20) J,Y1,XP(1,J),YP(1,J),R1,FEE
FORMAT (1X,14,4F15.7,F15.7)

IF (KKK.GT.0) GO TO 30

FEETEM=FEE

Y1TEM=Y1

R1TEMP=R1

CONTINUE

NS (1)=J-1

IF (I.NE.1) GO TO 55

NS1=NS (1)

GO TO 5

C PREPARATION OF INTERPLORATION

55

105
110

125
120

115

NS2=NS (I)

DO 105 L=1,NS2

J=NS2+1-L

IF (YP(1,NS1).GT.YP(I,1)) GO TO 110
CONTINUE

NS2=J

NREC=2

XERS=0.D0

DO 115 L=1,NS2

DO 125 J=NREC,NS!

IF (Yp(1,J).GT.YP(I,L)) GO TO 120
CONTINUE

NREC=J

J1=J~-1

XERROR (L) =XP (I,L)-XP(1,31)-(YP(I,L)-YP(1,31))*(XP(1,3)-XP(1,J1))
+ J(YP(1,D)-YP(1,J1))
XERS=XERS+XERROR (L)

CONTINUE

XERS=-XERS/FLOAT (NS2)

XPE=0.D0

SDX=0.D0
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80

50

45

40

IF (NDBUG.GT.2) WRITE (LP,80)

FORMAT (1H1,13X,'NO.',4X, 'DIVIATION VALUE')

DO 45 L=1,NS2

XERROR (L) =XERROR (L) +XERS

IF (NDBUG.GT.2) WRITE (LP,50) L,XERROR(L)
FORMAT (13X,13,2F15.7)

IF (DABS (XERROR (L)) .GT.XPE) XPE=DABS (XERROR (L))
SDX=SDX+XERROR (L) **2

CONTINUE

SDX=DSQRT (SDX/FLOAT (NS2))

WRITE (LP,40) XERS,XPE,SDX

FORMAT (///1X,'XSH=',E15.7,5X, 'XPE=',E15.7,5X, 'SDX=",E15.7)
IF (NDBUG.GT.2) WRITE (LP,60) NS1,NS2

FORMAT (//5X,'NS1=',16,6X, 'NS2="',16)

CONTINUE

STOP

END
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FLOWCHART FOR PROGRAM II

‘ START ’

\

/ INPUT GIVEN DATA/

\J

FIND AUXILIARY VALUES
FOR CALCULATION

Y
CHECK IF UNDERCUTTING
OR FIND SOME DESIGNED
PARAMETER TO AVOID
UNDERCUTTING

STOP
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PROGRAM II
UDDERCUTTING CONDITION FOR HELICAL PINION
GENERATED BY CONE CUTTER
AUTHOR: FAYDOR LITVIN
JIAO ZHANG
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PURPOSE

THIS PROGRAM IS USED TO FIND THE UDDERCUTTING CONDITIONS FOR A
HELICAL PINION GENERATED BY CONE CUTTER

NOTE

THIS PROGRAM 1S WRITTEN IN FORTRAN 77. 1IT CAN BE COMPILED BY V
COMPILE IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

IMPLICIT REAL*8 (A-H,0-2)
DOUBLE PRECISION KSIN,MU

DEFINE PARAMETERS USED BY PROGRAMS

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE INPUT AND OUTPUT
DEVICES
IN=5
LP=6
(2) NDBUG IS USE TO CONTROL THE AUXILIARY OUTPUT FOR DEBUGGING
NDBUG=2
(3) OTHER PARAMETERS (DON'T CHANGE)
DR=DATAN(1.D0) /45.D0

DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)

(1) PINION AND GEAR: PN=DIAMETRAL PITCH; N1=PINION TOOTH NUMBER;
KSIN=PRESSURE ANGLE; BETAP=HELIX ANGEL OF PINION;
HD=HEIGHT OF DEDENDUM OF PINION

PN=10.D0

N1=20
KSIN=20.DO*DR
BETAP=30.D0*DR
HD=1.D0/PN

(2) TOOL: ALPHA=HALF OF CONE VERTEX ANGLE (DEGREE);
RC=RADIUS OF BOTTOM CIRCLE OF CONE;

MU=TILT ANGLE OF MOUNTING TOOL

ALPHA=20.DO*DR

RC=0.35D0
MUO=DATAN (DSIN (KSIN) *DTAN (BETAP))
MU=0. *MUO

(3) PROBLEM: NPROB=ID NO. OF PROBLEM (-1=GIVEN N1 AND HD, FIND IF
UDDERCUTTING OCCUR; O=GIVEN N1, FIND MAXIMUM HD WITHOUT UDDER-
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CUTTING; 1=GIVEN HD, FIND MINIMUM N1 WITHOUT UDDERCUTTING);
N=NO. OF THETA VALUES USED CALCULATION;
DELTHE=INCREMENT OF THETA (DEGREE)

NPROB= 1

N=21

DELTHE=1.DO*DR

eNeNe]

DESCRIPTION OF OUTPUT

OUTPUT IS A STATEMENT BASED ON THE PROBLEM WITHOUT ANY LITERAL
PARAMETER

eEsEeNeNsEeNe!

FIND AUXILIARY VALUES FOR CALCULATION
SK=DSIN (KSIN)
CK=DCOS (KSIN)
SB=DSIN (BETAP)
CB=DCOS (BETAP)
SM=DSIN (MU)
CM=DCOS (MU)
SA=DSIN (ALPHA)
CA=DCOS (ALPHA)
PT=PN*CB
RP=N1/2./PT
CL=RC/SA
CH=HD/CK/CM
UU=CL-CH
AA=CM*CB+SK*SM*SB
BB=CA*CK*SB+SA*SK*CM*SB-SA*SM*CB
CC=CA*CK*SB
DD1=CA*SK-SA*CK*CM
DD=DD1*CA
EE1=SA*SK+CA*CK*CM
EE=EE1*SA
FF1=CK*SM
FF=FF1*CA
1I=(CA*SK*CM*SB-SA*CK*SB-CA*SM*CB) *CA/SA
WRITE (LP,90)
90 FORMAT(1H1)
IF (NPROB) 5,15,25
C CHECK IF UNDERCUTTING OCCURS
5 WRITE (LP,10)
10 FORMAT (1H1/3X,'NO',7X,'THETA',12X,'A',13X,'B',14X,'C', 10X,

+ "BX**2-4 *A*C' 3X, 'Ul/(RC/SIN(ALPHA)) ')
UMIN=5.D0

DO 45 I=1,N

NN=(N+1) /2

THE=DBLE (FLOAT (I~NN) ) *DELTHE

ST=DSIN (THE)

CT=DCOS (THE)

GG=DD*CT+EE-FF*ST

WW= (BB*BB+AA*AA) *EE+ (BB*DD-AA*FF) *I1+ST*ST*ST* (AA*AA*FF-BB*BB*FF
+ +2.*AA*BB*DD) -CT*CT*CT* (BB*BB*DD-AA*AA*DD+2, *AA*BB*FF)

+ ~-ST* (2. *AA*AA*FF+AA*BB*DD-AA*EE*II) +CT* (2. *BB*BB*DD+AA*BB*FF
+ +BB*EE*I1)
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XX=((AA*FF*SA*SA-CC*EE) *CT+ (AA*DD*SA*SA~AAXEE*CA*CA) *ST+ (AA*FF*CA
+ *CA-CC*DD) ) * (BB*CT+AA*ST+II)
YY=DD1*SA*CT-FF1*SA*ST-EE1*CA
ZZ=CM*CK
A=YY*WW
B=UU* (WW*ZZ+XX*YY) +RP*GG*GG*GG
C=UU*UU*XX*ZZ
D=B*B-4.*A*C
IF (D.GE.0.) THEN
Ul=(-B~DSQRT (D)) /2./A
U2=(~-B+DSQRT(D))/2./A
Ul=Ui/CcL
IF (UMIN.GT.Ul) UMIN=U1
U2=U2/CL
THE=THE/DR
IF (NDBUG.LT.1) WRITE (LP,100) I1,THE,A,B,C,D,Ul
100 FORMAT (1X,14,8F15.7)
ELSE
IF (NDBUG.LT.1) WRITE (LP,100) I,THE,A,B,C,DD
END IF
45 CONTINUE
IF (UMIN.LT.1.DO) WRITE (LP,110)
110 FORMAT (///1X, 'UDDERCUTTING WILL OCCUR FOR YOUR DESIGN')
IF (UMIN.GE.1.D0) WRITE (LP,120)
120 FORMAT (///1X,'UDDERCUTTING WILL NOT OCCUR FOR YOUR DESIGN')
GO TO 35
C DETERMINE THE MAXIMUM ADDENDUM HEIGHT OF RACK CUTTER
15 WRITE (LP,20)
20 FORMAT (1H1/3X,'NO',7X,'THETA',12X,'A',13X,'B',14X,'C', 10X,
+ "BX**2-4,%A%*C',3X, 'ALLOWED RATIO OF HD/(1/PN)')
UMIN=5.D0
DO 55 I=1,N
THE=DBLE (FLOAT (I-NN) ) *DELTHE
ST=DSIN (THE)
CT=DCOS (THE)
GG=DD*CT+EE-FF*ST
WW= (BB*BB+AA*AA) *EE+ (BB*DD-AA*FF) *II+ST*ST*ST* (AA*AA*FF-BB*BB*FF
+ +2 ., *AA*BB*DD) -CT*CT*CT* (BB*BB*DD-AA*AA*DD+2.*AA*BB*FF)
+ -ST*(2.*AA*AA*FF+AA*BB*DD-AA*EE*II)+CT* (2.*BB*BB*DD+AA*BB*FF
+ +BB*EE*I1)
XX=((AA*FF*SA*SA-CC*EE) *CT+ (AA*DD*SA*SA-AA*EE*CA*CA) *ST+ (AA*FF*CA
+ *CA-CC*DD) ) * (BB*CT+AA*ST+II)
YY=DD1*SA*CT-FF1*SA*ST-EE1*CA
ZZ=CM*CK
A=XX*ZZ
B=CL* (WW*ZZ+XX*YY)
C=CL*CL*YY*WW+CL*RP*GG*GG*GG
D=B*B-4.*A*C
TEST=DABS (A/B)
EPS=1.D-16
THE=THE/DR
IF (D.GE.0.) THEN
IF (TEST.GT.EPS) THEN
Ul=(-B+DSQRT(D))/2./A
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U2=(-B-DSQRT(D))/2./A
ELSE
Ul=-C/B
U2=0,
END IF
Ul=(CL-U1) *CK*PN
U2=(CL-U2) *CK*PN
IF (NDBUG.LT.1) WRITE (LP,100) I,THE,A,B,C,D,Ul1,U2
ELSE
IF (NDBUG.LT.1) WRITE (LP,100) I,THE,A,B,C,D
END IF
IF (UMIN.GT.Ul) UMIN=Ul
55 CONTINUE
WRITE (LP,200) UMIN
200 FORMAT (///1X,'TO AVOID UDDERCUTTING, IT IS NECESSARY TO KEEP DEDE
+NDUM OF PINION <=',F10.7,'/PN')
GO TO 35
C DETERMINE THE MINIMUM NO. OF TEETH FOR UNUNDERCUTTING
25 WRITE (LP,30)
30 FORMAT (1H1/3X,'NO',7X,'THETA',7X,'NO. OF TEETH')
RNMAX=0.
DO 65 I=1,N
THE=DBLE (FLOAT (I-NN) ) *DELTHE
ST=DSIN (THE)
CT=DCOS (THE)
GG=DD*CT+EE-FF*ST
WW=(BB*BB+AA*AA) *EE+ (BB*DD~AA*FF) *II+ST*ST*ST* (AA*AA*FF-BB*BB*FF
+ +2 . *AA*BB*DD) ~CT*CT*CT* (BB*BB*DD-AA*AA*DD+2. *AA*BB*FF)
+ -ST* (2, *AA*AA*FF+AA*BB*DD-AA*EE*I11) +CT* (2, *BB*BB*DD+AA*BB*FF
+ +BB*EE*I1I)
XX=((AA*FF*SA*SA-CC*EE) *CT+ (AA*DD*SA*SA-AA*EE*CA*CA) *ST+ (AA*FF*CA
+ *CA-CC*DD) ) * (BB*CT+AA*ST+II)
YY=DD1*SA*CT-FF1*SA*ST-EE1*CA
ZZ=CM*CK
RR=- (CL*CL*YY*WW+CL*UU* (WW*ZZ+XX*YY) +UU*UU*XX*ZZ) /CL/GG**3
RN=2.*RR*PT
THE=THE/DR
IF (RNMAX.LT.RN) RNMAX=RN
IF (NDBUG.LT.1) WRITE (LP,100) I,THE,RN
65 CONTINUE
WRITE (LP,300) RNMAX
300 FORMAT (/// 1X,'WITHOUT UDDERCUTTING, MINIMUM TOOTH NO. OF PINION
+I1S:',F11.7)
35 WRITE (LP,400)
400 FORMAT (1H1)
STOP
END
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* *
L PROGRAM III *
. * CONTACT ELLIPSIS FOR HELICAL PINION GENERATED BY *

* CONE CUTTER IN MESHING WITH REGULAR HELICAL GEAR *

* *
. X AUTHORS: FAYDOR LITVIN *
. JIAO ZHANG *
, * *

* %*
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PURPOSE

THIS PROGRAM IS USED TO FIND THE SHAPE AND ORIENTAION OF THE CONTACT

ELLIPSE WHEN A HELICAL PINION CROWNED BY CONE CUTTER IS IN
MESHING WITH A REGULAR HELICAL GEAR

NOTE

THIS PROGRAM IS WRITTEN IN FORTRAN 77. IT CAN BE COMPILED BY V
COMPILER IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

IMPLICIT REAL*8(A-H,0-Z)

DOUBLE PRECISION KSIN,MU,MUO,MUT,KSIC,KF,KH,KSP,KQP,KSG,KQG
DIMENSION CMM(3,4),EFD(3),EHD(3),RND(3),RD(4) ,EFF(3),EHF(3),
+ RNF (3) ,RC(3) ,RF(3),R1(3)

DEFINE PARAMETERS USED BY PROGRAMS

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE IN1UT AND OUTPUT
DEVICES
IN=5
LP=6
(2) NDBUG IS USE TO CONTROL THE AUXILIARY OUTPUT FOR DEBUGGING
NDBUG=2
(3) OTHER PARAMETERS(DON'T CHANGE)
DR=DATAN (1.D0) /45.D0

DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)

(1) PINION AND GEAR: PN=DIAMETRAL PITCH; N1=PINION TOOTH NUMBER;
MPG=TOOTH NUMBER RATIO(GEAR TOOTH NO./N1);
KSIN=PRESSURE ANGLE IN NORMAL SECTION;
BETAP=HELIX ANGEL;

HD=HEIGHT OF DEDENDUM OF PINION
PN=10.D0
N1=20
MPG=2
KSIN=20.DO*DR
BETAP=10.DO*DR
HD=1./PN

(2) TOOL: ALPHA=HALF OF CONE VERTEX ANGLE (DEGREE) ;

RC=RADIUS OF BOTTOM CIRCLE OF CONE;
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MU=TILT ANGEL TO INSTALL PINION CUTTING TOOL
ALPHA=80.DO*DR
MUO=DATAN (DSIN (KSIN) *DTAN (BETAP))
MU=0.*MUO
RC=1.D0
(3) DEFORMATION: DEL=CONTACT DEFORMATION AT CONTACT POINT
DEL=4.D-4
(4) OUTPUT: NU=NUMBER OF CONTACT POINTS IN MATING SURFACES FOR US
TO CALCULATE CONTACT ELLIPSES)
NU=101

DESCRIPTION OF OUTPUT PARAMETER

R1=PINION RADIUS OF CONTACT POINT

ALPHA=THE ROTATION ANGLE BETWEEN PRINCIPAL DIRECTION OF PINION
TOOTH SURFACE AND AXES OF CONTACT ELLIPSE

A=LENGTH OF HALF SHORT AXIS OF CONTACT ELLIPSE

B=LENTH OF HALF LONG AXIS OF CONTACT ELLIPSE (ALONG DIRECTION OF

GEAR TOOTH LEHGTH)

RNF=UNIT NORMAL OF PINION TOOTH SURFACE AT CONTACT POINT

EFF=PRINCIPAL DIRECTION OF PINION TOOTH SURFACE AT CONTACT POINT

EHF=PRINCIPAL DIRECTION OF PINION TOOTH SURFACE AT CONTACT POINT

FIND AUXILIARY VALUES FOR CALCULATION
SK=DSIN (KSIN)
CK=DCOS (KSIN)
SB=DSIN (BETAP)
CB=DCOS (BETAP)
SM=DSIN (MU)
CM=DCOS (MU)
SA=DSIN (ALPHA)
CA=DCOS (ALPHA)
KSIC=DATAN (SK/CK/CB)
CKC=DCOS (KSIC)
SKC=DSIN (KSIC)
PT=PN*CB
RP=N1/2./PT
RB=RP*DCOS (KSIC)
RA=RP+1./PN
N2=N1*MPG
RG=RP*MPG
CL=RC/SA
CH=HD/CK/CM
A=CL-CH
CMM(1,1) =CA*CK*CB+SA*SK*CM*CB+SA*SM*SB
CMM (1, 2) =SA*CK*CB-CA*SK*CM*CB-CA*SM*SB
CMM(1,3)=SK*SM*CB-CM*SB
CMM(1,4) =- (SK*CM*CB+SM*SB)
CMM (2,1) =CA*SK-SA*CK*CM
CMM (2, 2) =SA*SK+CA*CK*CM
CMM(2,3) =—CK*SM
CMM (2, 4) =CK*CM
CMM (3,1) =CA*CK*SB+SA*SK*CM*SB-SA*SM*CB
CMM (3, 2) =SA*CK*SB-CA*SK*CM*SB+CA*SM*CB
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CMM (3, 3) =SK*SM*SB+CM*CB

CMM (3, 4) =—SK*CM*SB+SM*CB
D1=CM*CB+SK*SM*SB
D2=SA*SM*CB~SB* (CA*CK+SA*SK*CM)
D3=CA*CK*SB

D4=CA* (CA*SK—-SA*CK*CM)

D5=SA* (SA*SK+CA*CK*CM)
D6=CA*CK*SM

UL=CL-2.DO*CH

UU=CL

MUT=MUO/DR

WRITE (LP,110) RP,RA,RB,MUT

110 FORMAT (///1X,'RP=',F15.7,5X, 'RA=',F15.7,5X, 'RB=',F15.7,5X,

+ 'MUO="',F15.7)
TH=0.D0

ST=DSIN (TH*DR)

CT=DCOS (TH*DR)

EFD(1)=ST

EFD(2)=0.D0

EFD(3)=-CT

EHD(1)=-CT*SA

EHD(2)=CA

EHD(3)=-ST*SA

RND (1) =CT*CA

RND(2)=SA

RND(3)=ST*CA

CALL MATMUL (CMM,EFD,EFF,3,3)
CALL MATMUL (CMM, EHD, EHF, 3,3)
CALL MATMUL (CMM,RND,RNF,3,3)
WRITE (LP,10) TH, (EFF(M),M=1,3), (EHF(M),M=1,3), (RNF(M) ,M=1,3)

10 FORMAT(1H1,///3X,'THTEA:',F15.7,' DEGREE'//1X,'EFF:',3F15.7/1%,

+ 'EHF:',3F15.7/1X,'NF :',3F15.7)
DO 15 J=1,NU

U=UU- (UU-UL) /FLOAT (NU-1) *FLOAT (J-1)
KF=-CA/SA/U

KH=0.D0

RD (1) =U*CT*SA

RD(2) =-U*CA

RD(3)=U*ST*SA

RD(4) =A

CALL MATMUL (CMM,RD,RC,3,4)

FEE= (U* (CT*D1+ST*D2) -A* ((CT*CA*CA+SA*SA) *D1-ST*D3) ) / (CT*D4+D5-ST*
+ D6) /RP

RF (1) =RC (1) -RP*FEE

RF (2)=RC(2) +RP

RF(3)=RC(3)

RPP=DSQRT (RF (1) *¥*2+RF (2) **2)

CALL PROT (RF,R1,FEE)

TEMP=RC (2) *EFF (1) -RF (1) *EFF (2)

B13=EHF (3) ~KF*TEMP

B23=-EFF(3)

B33=- (RNF (1) *RF (1) +RNF (2) *RF (2) +KF*TEMP*TEMP)
SIGMA=0.5D0O*DATAN (2.*B13*B23/ (B23*B23-B13*B13~- (KF-KH) *B33) )
COE1=(B23*B23-B13*B13- (KF-KH) *B33) /B33/DCOS (2. *SIGMA)
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COE2=KF+KH+ (B13*B13+B23*B23) /B33

KSP=(COE2-COE1) /2.D0

KQP=(COE2+COE1) /2.D0

IF (NDBUG.LT.1) WRITE (LP,20) U,FEE,RPP, (R1(M),M=1,3),

+ B13,B23,B33,SIGMA,KSP,KQP
20 FORMAT(//1X,'v =',F15.7,5X,'FEE=',F15.7,5X,'R1 =',F15.7/

+ 1X,'XP =',F15.7,5X,'YP =',F15.7,5X,'2ZP =',F15.7/
+ 1%, 'B13=',F15.7,5%X,'B23=",F15.7,5%, 'B33="',F15.7/
+ 1X,'SI1G=',F15.7,5X, 'KSP="',F15.7,5X, 'KQP=",F15.7)
W=-(A-U)

KSG=0.

KQG=1./ (RG*SK* (CKC/CK/CB) **2+W*CM*CK/SK)

G1=KSP-KQP

G2=KSG-KQG

S1=KSP+KQP

S$2=KSG+KQG

SIGMGP=-SIGMA
ALPHA1=0.5D0O*DATAN (G2*DSIN (2.*SIGMGP) / (G1-G2*DCOS (2. *SIGMGP)))
ALPHA2=ALPHA1+SIGMGP

AA=(S1-S2-DSQRT (G1*G1-2.*G1*G2*DCOS (2.*SIGMGP) +G2*G2)) /4.

BB=(S1-S2+DSQRT (G1*G1-2,*G1*G2*DCOS (2. *SIGMGP) +G2*G2)) /4.
AAA=1./DSQRT (DABS (AA))
BBB=1./DSQRT (DABS (BB) )
RATIO=BBB/AAA
ALPHA1=ALPHA1l/DR
ALPHA2=ALPHA2/DR
C WRITE (LP,130) G1,G2,S1,S2,ALPHAl
C 130 FORMAT (1X,5F15.7)
WRITE (LP,30) RPP,ALPHA2,AAA,BBB,RATIO
30 FORMAT (1X,'Rl1 =',6F15.7,5X,'ALP=',F15.7,5X,'A =',F15.7,5X%,
+ 'B =',F15.7,5X,'B/A=',F15.7)
IF (RPP.GT.RA) GO TO 5
15 CONTINUE
i 5 STOP
‘ END

SUBROUTINE MATMUL (CMM,A,B,N,M)
C THIS SUBROUTINE IS USED TO MULTIPLY THE MATRIX CMM(N*M) BY THE MATRIX
C A(M*1). THE RESULT IS STORED IN THE MATRIX B(N*1)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION CMM(3,M) ,A(M),B(N)
DO 5 I=1,N
5 B(I)=0.
DO 15 I=1,N
DO 15 J=1,M
15 B(I)=B(I)+CMM(1,J) *A(J)
‘ RETURN
END

SUBROUTINE PROT (A, B, FEE)
THIS SUBROUTINE IS USED TO ROTATE COORDINATE SYSTEM PLANARLY IN XOY
THROUGH ANGLE FEE

[pNe!
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DOUBLE PRECISION A(3),B(3),FEE
B(1)=A(1) *DCOS (FEE) +A (2) *DSIN (FEE)
B (2)=A(2) *DCOS (FEE) -A (1) *DSIN (FEE)
B(3)=A(3)

RETURN

END

111



FLOWCHART FOR PROGRAM IV

START

/ INPUT GIVEN DATA /

FIND AUXILIARY VALUES
FOR CALCULATION

SIMULATE MESHING OF
PINION AND GEAR

|

FIND WORKING RANGE OF
TEETH AND MAXIMUM
KINEMATIC ERROR

STOP

112



(@] aoNeNe NN

AaAaOOO0O0O0n

(@]

OO0 0000000000000 n0n

.

o de g e de v e dod e e e de ke de e e dede v dede bk ke e e dede e e dede e de e dede e e drde e e e e ek

. e * *
. * *
o X PROGRAM IV *
.. ¥ TRANSMISSION ERRORS OF HELICAL PINION GENERATED *
. BY CUTTER WITH CONE OR REVOLUTE SURFACE *
. ¥ IN MESHING WITH REGULAR HELICAL GEAR *

* *
. X AUTHORS: FAYDOR LITVIN *
X JIAO ZHANG *
.. % *

% %

% e de do sk do e o sk Sk ok e sk e de sk sk ok de sk de ke sk b e e dek b e skt ke e ek ek ek b ke ok ok

PURPOSE

THIS PROGRAM IS USED TO CALCULATE THE TRANSMISSION ERRORS OF A
PINION GENERATED BY THE CUTTER WITH CONE OR REVOLUTE SURFACE
IN MESHING WITH A MISALIGNED REGULAR HELICAL GEAR

NOTE

THIS PROGRAM 1S WRITTEN IN FORTRAN 77. 1IT CAN BE COMPILED BY V
COMPILER IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

IMPLICIT REAL*8(A-H,0-2)

DOUBLE PRECISION KSIN,MU,MUQ,KSIC

DIMENSION Z(99) ,ANGLE(99),ERROR (99) ,ERR (99)

COMMON /BLOCK1l/ X(11),Y(10),A(10,10),Y1(10),IPVT(10) ,WORK(10),

+ EPSI,DELTA,NC,NE,NDIM
COMMON /BLOCK2/ S(4,4),CMM(4,4) ,CMCD(4,4),C,R,RP,RG,Al,HD,RL,KSIC,
+ ALPHA,CK, SK,CB,SB,CM,SM,CA,SA,CKC, SKC,NTOOL

DEFINE PARAMETERS USED BY PROGRAMS

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE INPUT AND OUTPUT
DEVICES
IN=5
LP=6
(2) NDBUG IS USE TO CONTROL THE AUXILIARY OUTPUT FOR DEBUGGING
NDBUG=1
(3) NC IS THE UPPER LIMITATION OF REPEATATION FOR SOLVING NONLINEAR
EQUTIONS;
EPSI IS THE CLEARANCE OF FUNCTION VALUES WHEN THE FUNCTIONS
IS CONSIDERED AS SOLVED (ALL FUNTIONS HAVE FORMS OF F(X)=0);
DELTA IS THE RELATIVE DIFFERENCE FOR TAKING DERIVATIVES
NC, EPSI AND DELTA MAY BE CHANGED WHEN SOLUTIONS ARE DIVERGENT
OR LESS ACCURATE

NC=100
DELTA=1.D-3
EPSI=1.D-12
(4) OTHER PARAMETERS (DON'T CHANGE)
NDIM=10
NE=5
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DR=DATAN (1.D0) /45.D0
C DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)
C (1) PINION AND GEAR: PN=DIAMETRAL PITCH:; NP=PINION TOOTH NUMBER;
C RMPG=TOOTH NUMBER RATIO(GEAR TOOTH NO./NP);
C KSIN=PRESSURE ANGLE IN NORMAL SECTION;
C BETAP=HELIX ANGLE OF PINION AND GEAR;
C HD=HEIGHT OF DEDENDUM OF PINION:
C COE=COEFF. OF CENTRAL DISTANCE (USUALLY COE=1.)
PN=10.D0
NP=20
RMPG=2.D0
KSIN=20.DO*DR
BETAP=15.D0*DR
HD=1.D0O/PN
COE=1.000D0
(2) TOOL: ALPHA=HALF OF CONE VERTEX ANGLE (DEGREE) ;
RC=RADIUS OF BOTTOM CIRCLE OF CONE
R=RADIUS OF ARC
MU=TILT ANGEL OF MOUNTING TOOL
NTOOL=TOOL ID NO. (1=CONE SURFACE, 2=REVOLUTE SURFACE)
NTOOL=2
ALPHA=20.DO*DR
RC=10.3527D0
R=3.0D1
MUO=DATAN (DSIN (KSIN) *DTAN (BETAP))
MU= 0.*MUO
C  (3) MISALIGNMENT: NMIS=ID NO. (1=CROSSING AXES, 2=INTERSECTING AXES);
C NG=NO. OF MISALIGNED ANGLES TO BE SIMULATED (FROM -(NG-1)/2 TO
C
C

[sNeNesEeNe!

(NG-1) /2 TIMES GAMMAI WITH ODD NG);
GAMMAI=INCREMENT OF MISALIGNED ANGLE (MINUTE) ;
NMIS=2
NG=2
GAMMAT=5.,D0
(4) OUTPUT: FEEI=INCREMENT OF ROTATION ANGLE OF PINION (DEGREEE)
FEEI=1.0DO*DR

(@]

DESCRIPTION OF OUTPUT PARAMERTERS

FEE1=ROTATION ANGLE OF PINION
FEE2=ROTATION ANGLE OF GEAR
RP=RADIUS OF PINION CONTACT POINT
RG=RADIUS OF GEAR CONTACT POINT

FIND AUXILIARY VALUES FOR CALCULATION

sNeNsEsEsResEeEeNeEe NS

SK=DSIN (KSIN)
CK=DCOS (KSIN)
SB=DSIN (BETAP)
CB=DCOS (BETAP)
SM=DSIN (MU)

CM=DCOS (MU)

SA=DSIN (ALPHA)
CA=DCOS (ALPHA)
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KSIC=DATAN (SK/CK/CB)

CKC=DCOS (KSIC)

SKC=DSIN (KSIC)

PT=PN*CB

RP=NP/2./PT

RB=RP*DCOS (KSIC)

RA=RP+1. /PN

NG=NP*RMPG

RG=RP*RMPG

RL=RC*CA/SA

CH=HD/CK/CM

Al=RL/CA-HD/CK/CM

C= (RP+RG) *COE
NCOEF=360.D0*DR/FEEI1/FLOAT(N1)+0.3
N=NCOEF*2+1

CALL INTMAT(CMCD,4,4)
AA=RL*SA*SA/CA-HD/CK/CM

CMCD (1, 1)=CA*CK*CB+SA*SK*CM*CB+SA*SM*SB
CMCD (1, 2) =SA*CK*CB-CA*SK*CM*CB-CA*SM*SB
CMCD(1,3) =SK*SM*CB-CM*SB

CMCD (1, 4) =—RL*SA*CK*CB-AA* (SK*CM*CB+SM*SB)
CMCD(2, 1) =CA*SK-SA*CK*CM

CMCD (2, 2) =SA*SK+CA*CK*CM
CMCD(2,3)=-CK*SM

CMCD(2,4) =-RL*SA*SK+AA*CK*CM

CMCD (3, 1) =CA*CK*SB+SA*SK*CM*SB~SA*SM*CB
CMCD (3, 2) =SA*CK*SB—CA*SK*CM*SB+CA*SM*CB
CMCD (3, 3) =SK*SM*SB+CM*CB

CMCD (3, 4) =—RL*SA*CK*SB+AA* (-SK*CM*SB+SM*CB)
CALL INTMAT(S,4,4)

NGG= (NG~1) /2

DO 505 LL=1,NG
GAMMA=GAMMAI*FLOAT (LL-NGG) /60 .DO*DR
CG=DCOS (GAMMA/60.*DR)

SG=DSIN (GAMMA/60. *DR)

IF (NMIS.EQ.1) THEN

WRITE (LP,500) COE,GAMMA

500 FORMAT (1H1,///,1X,'C=',F4.2, ' % (RP+RG) CROSSING ANGLE=',

+ F5.1,'(M) ")

s(1,1)=CG

S(1,3)=-SG

$(3,1)=sG

S(3,3)=CG

ELSE

WRITE (LP,501) COE,GAMMA

501 FORMAT (1H1,///,1X,'C=',F4.2,'* (RP+RG) INTERSECTING ANGLE=',

+ F5.1,'(M)")

$(2,2)=CG

s$(2,3)=-SG

$(3,2)=SG

$(3,3)=CG

END IF

DO 205 L=1,2

DO 5 I=1,NE
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5 X(1)=0.D0
IF (NTOOL.EQ.1) X(5)=RL/CA-HD/CK/CM

C WRITE (6,1100) (X(JK),JK=1,5),RL,CA,HD,CK,CM
C1100 FORMAT (1X,'####Ht',5F15.7/7X,5F15.7)
DO 15 I=1,N

X (7) =FEEI*FLOAT (I- (N+1)/2)
IF (L.EQ.1) X(7)=0.DO
C X (5) =DARSIN (RP*X(7) /SK/R)
X(2)=X(7) /RMPG
CALL NONLIN
X(8)=X(2)+x(3)
IF (L.EQ.1) THEN
XIN=X(8)
WRITE (LP,10)
10 FORMAT (////8%,'FEE1(D)',8X,'FEE2(D)',8X, 'K-ERROR(S)',5X,
+ 'RP', 13X, 'RG',F15.7/)
GO TO 205
END IF
X(8)=X(8)-XIN
X(7)=x(7) /DR
X(8)=X(8) /DR
X(9)=(X(8)-X(7) /RMPG) *3600.D0
Z(1)=X(8)
ERR (1) =X (9)
WRITE (LP,20) (X(J),J=7,11)
20 FORMAT (1X,5F15.7,F15.7)
o WRITE (LP,30) (X(J),J=1,6)
C 30 FORMAT (1X,'###H',6F15.7)
C WRITE (LP,30) XP,YP,ZP,XG,YG
15 CONTINUE
NT=N-NCOEF
FII=FEEI/DR/2.DO*FLOAT (NCOEF)
WRITE (LP,80)
80 FORMAT (//,' FIND THE WORKING RANGE FOR ONE TOOTH:',F15.7/)
DO 55 I=1,NT
X (7) =FEEI*FLOAT (I- (N+1) /2) /DR/2.D0
X(8)=X(7)+FII
KK=I+NCOEF
ANGLE (I)=2Z (KK) -z (1)
ERROR (I)=(ANGLE (I)-FII)*3600.D0
WRITE (LP,60) X(7),X(8),ANGLE(I),ERROR(I)
60 FORMAT (1X,'(',F7.2,'----',F7.2,'):',F15,7,F15.7)
55 CONTINUE
DO 95 I=1,NT
ATEMP2=ERROR (I)
IF (I.NE.1) THEN
IF (ATEMP1*ATEMP2.LE.0.D0) GOTO 105
END IF
ATEMP1=ATEMP2
95 CONTINUE
WRITE (LP,160)
160 FORMAT (//1X,'MESHING IS DISCONTINUOUS')
105 IF (DABS(ATEMP1).LT.DABS (ATEMP2)) I=I-1
EMAX=0.
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135

170 FORMAT (//1X, 'WORKING RANGE FOR ONE TOOTH: ',F7.2,'--—-',F7.2/
+ 1X, 'THE MAXIMUM KINEMATIC ERROR:

205
505

EMIN=0.

DO 135 J=1,NCOEF

KS=I+J-1

ET=ERR (KS)

IF (ET.LT.EMIN) EMIN=ET

IF (ET.GT.EMAX) EMAX=ET
CONTINUE

ET=EMAX-EMIN

KK=I+NCOEF

WRITE (LP,170) z2(1),Z(KK),ET

CONTINUE
CONTINUE
STOP

END

SUBROUTINE FUNC

IMPLICIT REAL*8(A-H,0-2)

DOUBLE PRECISION KSIN,MU,MUO,KSIC
COMMON /BLOCK1/ X(11),Y(10),A(10,10),Y1(10),IPVT(10),WORK(10),

+ EPSI,DELTA,NC,NE,NDIN
COMMON /BLOCK2/ S(4,4),CMM(4,4),CMCD(4,4),C,R,RP,RG,Al,HD,RL,KSIC,
+ ALPHA,CK, SK,CB,SB,CM, SM, CA, SA, CKC, SKC,NTOOL

DIMENSION RD(4) ,RND(4),RC(4) ,RNC(4) ,RF (&)

CFEE=DCOS (X (3))
SFEE=DSIN (X (3))

CT=DCOS(X(4))

ST=DSIN(X(4))

CF=DCOS (X(7))

SF=DSIN(X(7))

IF (NTOOL.EQ.1) THEN
RD(1)=X(5) *CT*SA

RD(2) =RL-X(5) *CA
RD(3) =X (5) *ST*SA

RND (1) =CT*CA

RND(2) =SA

RND(3) =ST*CA

ELSE

CAL=DCOS (ALPHA+X (5))

SAL=DSIN (ALPHA+X(5))
SL2=DSIN(X(5)/2.)

CAL2=DCOS (ALPHA+X (5) /2.)
SAL2=DSIN-(ALPHA+X(5)/2.)
RD(1)=(A1*SA-2.*R*SL2*SAL2) *CT
RD(2) =HD/CK/CM*CA+2.*R*SL2*CAL2
RD(3) = (A1*SA-2,*R*SL2*SAL2) *ST
RND (1) =CAL*CT

RND (2) =SAL

RND (3) =CAL*ST

END IF

RD(4)=1.

CALL MATMUL (CMCD,RD,RC, 4,4)
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CALL MATMUL (CMCD,RND,RNC,3,3)
X (6)=(RC (1) -RC(2) *RNC (1) /RNC(2) ) /RP
RF (1) =RC (1) -RP*X (6)
RF (2) =RC (2) +RP
RF (3)=RC (3)
RF(4)=1.
CFPF1=DCOS (X(6) +X (7))
SFPF1=DSIN(X(6) +X(7))
XPF=RF (1) *CFPF1+RF (2) *SFPF1
YPF=RF (2) *CFPF1-RF (1) *SFPF1
ZPF=RF (3)
XNPF=RNC (1) *CFPF1+RNC (2) *SFPF1
YNPF=RNC (2) *CFPF1-RNC (1) *SFPF1
ZNPF=RNC (3)
CF2FG=DCOS (X (3))
SF2FG=DSIN(X(3))
A2=-X (1) *SB+RG*X (2)
RFG1=CK*CK/CKC*DCOS (X (3) +KSIC) *A2+RG*SF2FG
RFG2=CK*CK/CKC*DSIN (X (3) +KSIC) *A2-RG*CF2FG
RFG3=X (1) * (CB+SK*SK*SB*SB/CB) ~RG*X (2) *SK*SK*SB/CB
RNFG1=CK*CB*CF2FG-SK*SF2FG
RNFG2=CK*CB*SF2FG+SK*CF2FG
RNFG3=CK*SB
XGF=RFG1*S(1,1) +RFG2*S(1,2) +RFG3*S5(1,3)
YGF=RFG1*S(2,1) +RFG2*S(2,2) +RFG3*5(2,3)
ZGF=RFG1*S (3, 1) +RFG2*S(3,2) +RFG3*S(3,3)
XNGF=RNFG1*S(1,1)+RNFG2*S(1,2) +RNFG3*S(1,3)
YNGF=RNFG1*S(2,1) +RNFG2*S (2, 2) +RNFG3*S (2, 3)
ZNGF=RNFG1*S (3, 1) +RNFG2*S (3,2) +RNFG3*S(3,3)
WRITE (6,100) X(1),X(2),X(3),X(4),X(5)
WRITE (6,100) XPF,YPF,ZPF,XGF,YGF,ZGF

100 FORMAT (1X,'%%%%%',8F15.7)
WRITE (6,100) XNPF,YNPF,ZNPF,XNGF, YNGF,ZNGF
Y (1) =XPF-XGF
Y (2)=YPF-YGF-C
Y (3)=ZPF-2ZGF
Y (4) =YNPF-YNGF
Y (5) =ZNPF-ZNGF
% (10) =DSQRT (XPF*XPF+YPF*YPF)
X(11) =DSQRT (XGF*XGF+YGF*YGF)
WRITE (6,20) (Y(I1),II=1,5)

20 FORMAT (1X,'$$S$$',6F15.7)
RETURN
END

SUBROUTINE INTMAT (A,N,M)
THIS SUBROUTINE IS USED TO INITIATE THE MATRIX, WITH UNIT DIAGONAL
ELEMENTS AND NULL OTHER ELEMENTS
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(4,4)
Do 5 1I=1,N
DO 5 J=1,M
A(1,J)=0.
IF (1.EQ.J) A(I,J)=1.
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5 CONTINUE

RETURN

END
o

SUBROUTINE MATMUL (CMM,A,B,N,M)
C THIS SUBROUTINE IS USED TO MULTIPLY THE MATRIX CMCD(N*M) BY THE MATRIX
C A(M*1). THE RESULT IS STORED IN THE MATRIX B(N*1)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION CMM(4,4),A(4),B(4)

DO 5 I=1,N
5 B(1)=0.
Do 15 1=1,N
DO 15 J=1,M
15 B(I)=B(I)+CMM(I,J)*A(J)
RETURN
END
o
C
SUBROUTINE NONLIN
o
IMPLICIT REAL*8(A-H,0-2)
COMMON /BLOCK1/ X(11),Y(10),A(10,10),Y1(10),IPVT(10),WORK(10),
+ EPSI,DELTA,NC,NE,NDIM
C
DO 5 I=1,NC
CALL FUNC
o WRITE (6,10) I,(X(3),Y),J=1,5)

C 10 FORMAT(1X, '***' 15/5(1X,2D15.7/))

DO 15 J=1,NE
IF (DABS(Y(J)).GT.EPSI) GO TO 25

15 CONTINUE
GO TO 105

25 DO 35 J=1,NE

35 YI(2)=Y(I)
DO 45 J=1,NE
DIFF=DABS (X (J)) *DELTA
IF (X(J3).EQ.0.D0) DIFF=DELTA
XMAM=X (J)
X (J)=X(J) -DIFF
CALL FUNC
X (J) =XMAM
DO 55 K=1,NE

55 A(K,J)=(Y1(K)~Y(K)) /DIFF

45 CONTINUE
DO 65 J=1,NE

65 Y(3)=-Y1(D)
CALL DECOMP (NDIM,NE,A,COND,IPVT,WORK)
CALL SOLVE (NDIM,NE,A,Y,IPVT)
DO 75 J=1,NE

75 X()=X(+Y(D)

5 CONTINUE

105 RETURN

END
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SUBROUTINE DECOMP (NDIM,N,A,COND,IPVT,WORK)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NDIM,N) ,WORK(N),IPVT(N)

DECOMPOSES AREAL MATRIX BY GAUSSIAN ELIMINATION,
AND ESTIMATES THE CONDITION OF THE MATRIX.

—-COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,
M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

USE SUBROUTINE SOLVE TO COMPUTE SOLUTIONS TO LINEAR SYSTEM.
INPUT..
NDIM = DECLARED ROW DIMENSION OF THE ARRAY CONTAINING A

N = ORDER OF THE MATRIX
A MATRIX TO BE TRIANGULARIZED

OUTPUT. .

A CONTAINS AN UPPER TRIANGULAR MATRIX U AND A PREMUTED
VERSION OF A LOWER TRIANGULAR MATRIX I-L SO THAT
(PERMUTATION MATRIX) *A=L*U

COND = AN ESTIMATE OF THE CONDITION OF A.
FOR THE LINEAR SYSTEM A*X = B , CHANGES IN A AND B
MAY CAUSE CHANGES COND TIMES AS LARGE IN X.
IF COND+1.0 .EQ. COND , A IS SINGULAR TO WORKING
PRECISION. COND IS SET TO 1.0D+32 1IF EXACT
SINGULARITY IS DETECTED.

IPVT = THE PIVOT VECTOR
IPVT(K) = THE INDEX OF THE K-TH PIVOT ROW
IPVT(N) = (-1)**(NUMBER OF INTERCHANGES)

WORK SPACE.. THE VECTOR WORK MUST BE DECLARED AND INCLUDED
IN THE CALL. ITS INPUT CONTENTS ARE IGNORED.
ITS OUTPUT CONTENTS ARE USUALLY UNIMPORTANT.

THE DETERMINANT OF A CAN BE OBTAINED ON OUTPUT BY

DET(A) = IPVT(N) * A(1,1) * A(2,2) * ... * A(N,N)
IPVT(N) =1
IF (N.EQ.1) GO TO 150
NM1=N-1
COMPUTE THE. 1-NORM OF A .

ANORM=0.D0
DO 20 J=1,N

T=0.D0

DO 10 I

=1,N
10 T=T+DABS(A(I,J]))
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IF (T.GT.ANORM) ANORM=T
20 CONTINUE
DO GAUSSIAN ELIMINATION WITH PARTIAL

PIVOTING.
DO 70 K=1,NMl
KP1=K+1
FIND THE PIVOT.
M=K

DO 30 I=KPI,N
IF (DABS(A(I,K)).GT.DABS(A(M,K))) M=I
30 CONTINUE
IPVT (K) =M
IF (M.NE.K) IPVT(N)=-IPVT(N)
T=A(M,K)
AM,K)=A(K,K)
A(K,K)=T
SKIP THE ELIMINATION STEP IF PIVOT IS ZERO.
IF (T.EQ.0.D0) GO TO 70

COMPUTE THE MULTIPLIERS.
DO 40 I=KP1,N
40 A(I,K)=-A(I,K)/T .
INTERCHANGE AND ELIMINATE BY COLUMNS.
DO 60 J=KP1,N
T=AM, J)
AM,D=A(K,D)
A(K,J)=T
IF (T.EQ.0.D0) GO TO 60
DO 50 I=KP1,N
50 AT, =A(1,1)+A(I,K)*T
60 CONTINUE
70 CONTINUE

COND = (1-NORM OF A)* (AN ESTIMATE OF THE 1-NORM OF A-INVERSE)

THE ESTIMATE IS OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE
SMALL SINGULAR VECTOR. THIS INVOLVES SOLVING TWO SYSTEMS

OF EQUATIONS, (A-TRANSPOSE)*Y = E AND A*Z = Y WHERE E

IS A VECTOR OF +1 OR -1 COMPONENTS CHOSEN TO CAUSS GROWTH IN Y.
ESTIMATE = (1-NORM OF Z)/(1-NORM OF Y)

SOLVE (A-TRANSPOSE)*Y = E .
DO 100 K=1,N
T=0.D0
IF (K.EQ.1) GO TO 90
KM1=K-1
DO 80 I=1,KMl
80 T=T+A(I,K)*WORK(I)
90 EK=1.D0
IF (T.LT.0.DO) EK=-1.D0
IF (A(K,K).EQ.0.D0O) GO TO 160
100 WORK (K)=- (EK+T) /A(K,K)
DO 120 KB=1,NMl1
K=N-KB
T=0.D0
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110

120

130

140

150

160

KP1=K+1
DO 110 I=KP1,N
T=T+A (I,K) *WORK (K)
WORK (K) =T
M=IPVT (K)
IF (M.EQ.K) GO TO 120
T=WORK (M)
WORK (M) =WORK (K)
WORK (K) =T

CONTINUE

YNORM=0.D0
Do 130 I1=1,N
YNORM=YNORM+DABS (WORK (1))

SOLVE A*Z =Y
CALL SOLVE (NDIM,N,A,WORK,IPVT)

ZNORM=0.D0
DO 140 1=1,N
ZNORM=ZNORM+DABS (WORK (1))

ESTIMATE THE CONDITION.
COND=ANORM*ZNORM/YNORM
IF (COND.LT.1.D0) COND=1.DO
RETURN
1-BY-1 CASE..
COND=1.DO
IF (A(1,1).NE.0.DO) RETURN

EXACT SINGULARITY
COND=1.0D32
RETURN
END
SUBROUTINE SOLVE (NDIM,N,A,B,IPVT)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NDIM,N),B(N),IPVT(N)

SOLVES A LINEAR SYSTEM, A*X = B

DO

NOT SOLVE THE SYSTEM IF DECOMP HAS DETECTED SINGULARITY.

-COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,
M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)
INPUT..
NDIM = DECLARED ROW DIMENSION OF ARRAY CONTAINING A
N = ORDER OF MATRIX
A = TRIANGULARIZED MATRIX OBTAINED FROM SUBROUTINE DECOMP
B = RIGHT HAND SIDE VECTOR
IPVT = PIVOT VECTOR OBTAINED FROM DECOMP
OUTPUT..
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10
20

30
40
50

B = SOLUTION VECTOR,

IF (N.EQ.1) GO TO 50
NM1=N-1
DO 20 K=1,NM1
KP1=K+1
M=IPVT (K)
T=B (M)
B (M) =B (K)
B(K)=T
DO 10 I=KP1,N
B(I)=B(I)+A(I,K)*T
CONTINUE

DO 40 KB=1,NMl
KM1=N-KB
K=KM1+1
B(K)=B (K) /A(K,K)

=-B (K)
DO 30 I=1,KM1
B(I)=B(I)+A(I,K)*T

CONTINUE

B(1)=B(1)/A(1,1)

RETURN

END

X

DO THE FORWARD ELIMINATION,

NOW DO THE BACK SUBSTITUTION.
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KINEMATIC ERROR
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L PROGRAM V *
. *  TRANSMISSION ERRORS OF CROWNED HELICAL PINION IN *
. * MESHING WITH REGULAR HELICAL GEAR WITH PREDESIGNED *
. ¥ TRANSMISSION ERRORS AND CONTACT PATH *
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. X JIAO ZHANG *

* %

* %

o o 3 de e o Je o o v e e e ok e de S S Sk Sk vk e e e ek e e e e Sk sk e sk de ks de ek e e e sk ek ek sk ek ok ke ke

PURPOSE

THIS PROGRAM IS USED TO CALCULATE THE TRANSMISSION ERRORS OF A
CROWNED HELICAL PINION AND A HELICAL GEAR WHEN THEIR AXES ARE
MOUNTED WITH SOME ERRORS. THE MAGNITUDE OF TRANSMISSION ERRORS
AND CONTACT PATH ARE PRE-DESIGNED.

NOTE

THIS PROGRAM IS WRITTEN IN FORTRAN 77. IT CAN BE COMPILED BY V
COMPILER IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

IMPLICIT REAL*8 (A-H,0-2)

DOUBLE PRECISION KSIN,MU,KK,KSIC

DIMENSION Z(99),ANGLE (99) ,ERROR (99),ERR (99) ,W(99) ,RPR(99) ,RGR (99),
+ ZP (99) ,2G(99)

COMMON /BLOCK1/ X(13),Y(10),A(10,10),Y1(10),IPVT(10) ,WORK(10),

+ EPSI,DELTA,NC,NE,NDIM
COMMON /BLQCKZ/ s(4,4) ,AT(5),C,RP,RG,CK, SK,CB,SB,CKC,KSIC,TB,
+ COEG1,COEG2,RMGP, AA,DR,KK,R

DEFINE PARAMETERS USED BY PROGRAMS

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE INPUT AND OUTPUT
DEVICES
IN=5
LP=6
(2) NDBUG IS USE TO CONTROL THE AUXILIARY OUTPUT FOR DEBUGGING
NDBUG=1
(3) NC IS THE UPPER LIMITATION OF REPEATATION FOR SOLVING NONLINEAR
EQUTIONS;
EPSI IS THE CLEARANCE OF FUNCTION VALUES WHEN THE FUNCTIONS
IS CONSIDERED AS SOLVED (ALL FUNTIONS HAVE FORMS OF F(X)=0);
DELTA IS THE RELATIVE DIFFERENCE FOR TAKING DERIVATIVES
NC, EPSI AND DELTA MAY BE CHANGED WHEN SOLUTIONS ARE DIVERGENT
OR LESS ACCURATE
NC=100
DELTA=1.D-3
EPSI=1.D-10
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(4) OTHER PARAMETERS (DON'T CHANGE)
NDIM=10
NE=5
DR=DATAN (1.D0) /45.D0
DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)
(1) PINION AND GEAR: PN=DIAMETRAL PITCH; NP=PINION TOOTH NUMBER;
RMPG=TOOTH NUMBER RATIO(GEAR TOOTH NO./NP);
KSIN=PRESSURE ANGLE IN NORMAL SECTION;
BETAP=HELIX ANGLE OF PINION AND GEAR;
COE=COEFF. OF CENTRAL DISTANCE (USUALLY COE=1.)
PN=2.D0
NP=12
RMPG=94./12.
KSIN=30.DO*DR
BETAP=15.D0*DR
COE=1.000D0
(2) PREDESIGN TRANSMISSION ERRORS AND CONTACT PATH:
AA=LEVEL OF PREDESIGNED PARABOLIC TRNASMISSION ERRORS IN SECOND
KK=COEFFICIENT OF CONTACT PATH DIRECTION (1.D-3=CROSS TOOTH
SURFACE:; 5.D6=ALONG TOOTH SURFACE)
R=RADIUS OF ARC ATTACHED TO CHOSEN CONTACT PATH
AA=25.D0
KK=5.D6
R=0.3584D0
(3) MISALIGNMENT: NMIS=ID NO. (1=CROSSING AXES, 2=INTERSECTING AXES);
NG=NO. OF MISALIGNED ANGLES TO BE SIMULATED (FROM -(NG-1)/2 TO
(NG-1) /2 TIMES GAMMAI WITH ODD NG);
GAMMAI=INCREMENT OF MISALIGNED ANGLE (MINUTE) ;
NMIS=1
NG=3
GAMMAI=3.D0
(4) OUTPUT: FEEI=INCREMENT OF ROTATION ANGLE OF PINION (DEGREEE)
FEEI=1.0DO0*DR

DESCRIPTION OF OUTPUT PARAMERTERS

FEE1=ROTATION ANGLE OF PINION

FEE2=ROTATION ANGLE OF GEAR

RP=RADIUS OF PINION CONTACT POINT

RG=RADIUS OF GEAR CONTACT POINT

ZP=LENGTH OF PINION CONTACT POINT FROM MIDDLE SECTION
ZG=LENGTH OF GEAR CONTACT POINT FROM MIDDLE SECTION

FIND AUXILIARY VALUES FOR CALCULATION

DEFINE USEFUL CONSTANTS AND PARAMETERS FOR PINION AND GEAR

RMGP=1./RMPG

NG=NP*RMPG+0.5

AA=AA* (2/3600.*DR* (NP/DR/180.) **2)
SK=DSIN (KSIN)

CK=DCOS (KSIN)

SB=DSIN(BETA)

CB=DCOS (BETA)

TB=SB/CB
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KSIC=DATAN (SK/CK/CB)
CKC=DCOS (KSIC)
SKC=DSIN (KSIC)
PT=PN*CB
RP=NP/2./PT
RPB=RP*CKC
RPA=RP+1.0/PN
RG=NG/2./PT
RGB=RG*CKC
RGA=RG+1.0/PN

WRITE (LP,56) RP,RPB,RPA,RG,RGB,RGA,AA
56 FORMAT (1X, '&&&&&&','RP=',F15.7,5X, 'RPB=',6F15.7,5X, 'RPA=",F15.7/
+ 1X, '&&&&&& ", 'RG=",F15.7,5X, 'RGB=" ,F15.7,5X, 'RGA=",F15.7)

CON1=(1,+SK*SK*TB*TB)

AT (1) = (CK**4 /CRC**2*KK**2-SK**4*TB*%2) *RG*RG

AT (2) = (2. *SK*SK*SB*CON1-2 . *KK**2*SB*CK**4/CKC**2) *RG
AT (3) = (-2, *CK*CK/CKC*SKC*KK**2-2 . *KK*SK*SK*TB) *RG*RG
AT (4) = (2. *SB*CK*CK/CKC*SKC*KK**2+2, *RK*CB*CON1) *RG
AT (5) =CK**4 /CRC**2*SB**2*KK**2-CB**2*CON1*CON1

C=(RP+RG) *COE
CALL INTMAT(S,4,4)
NGG=(NG-1) /2

DO 505 LL=1,NG

GAMMA=GAMMAI*FLOAT (LL-NGG)

CG=DCOS (GAMMA/60. *DR)
SG=DSIN (GAMMA/60.*DR)

IF (NMIS.EQ.1) THEN
WRITE (LP,500) COE,GAMMA

500 FORMAT (1H1,///,1X,'C=',F9.4,'*(RP+RG)

+ F8.4,'M) ")
s(1,1)=CG

s(1,3)=-SG

$(3,1)=SG

5$(@3,3)=CG

ELSE

WRITE (LP,501) COE,GAMMA

501 FORMAT (1H1,///,1X,'C=',F4.2,'*(RP+RG)

+ F5.1,'M) ')
s(2,2)=CG
$(2,3)=-SG
$(3,2)=SG
$(3,3)=CG
END IF

CROSSING ANGLE=',

INTERSECTING ANGLE=',

NCOEF=IDINT (360.*DR/FEEI/FLOAT (NP) +0.5)

N=2*NCOEF

NHALF=(N+1) /2

XIN=0.

DO 205 L=1,2
LSGN=(-1) **L

DO 15 I=1,NHALF
LI=NHALF+LSGN* (I-1)

IF (L.EQ.1) NMIN=LI

IF (L.EQ.2) NMAX=LI

X (7)=LSGN*FEEI*FLOAT (I-1)
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X(4)=X(7)

X(2)=X(7) /RMPG

X(3)=0.

X(5)=(-(AT(2) *X(2) +AT (4) ) +DSQRT ( (AT (2) *X (2) +AT (4)) **2-4 ,*AT (5)
*(AT(3) *X(2) +AT (1) *X(2)*X(2)))) /2./AT(5)

X(1)=0.

CALL NONLIN

X(8)=x(1)+X(2)

C FIND INITIAL VALUE OF X(8)

51

15
205

10
+

20
25

80

55

95

IF (L.EQ.1.AND.I.EQ.1) THEN
XIN=X(8)

WRITE (LP,51) XIN

FORMAT (1X, 'XIN=',D15.7)

GO TO 15

END IF

X(8)=X(8)-XIN

W(LI)=X(7) /DR

Z(LI)=X(8) /DR

ERR(LI)=(X(8)-X(7) /RMPG) *3600.D0/DR

RPR(LI)=X(10)

RGR (L1)=X(11)

ZP(LI1)=Xx(12)

2G(LI)=X(13)

WRITE (LP,20) W(LI),Z(LI),ERR(LI),RPR(LI),RGR(LI)

CONTINUE

CONTINUE

WRITE (LP,10)

FORMAT (////8X,'FEE1(D)',8X,'FEE2(D)',8X, 'K-ERROR(S) ', 5X,
'RP',13X,'ZP',13X,'RG',13X, '2G',F15.7/)

DO 25 I=NMIN,NMAX

WRITE (LP,20) W(I),z(I),ERR(I),RPR(I),ZP(I),RGR(1),ZG(I)

FORMAT (1X,2F15.7,F12.4,4F15.7)

CONTINUE

NT=NMAX-NCOEF

FII=FEEI/DR/RMPG*FLOAT (NCOEF)

WRITE (LP,80)

FORMAT (//,' FIND THE WORKING RANGE FOR ONE TOOTH:',F15.7/)

DO 55 I=NMIN,NT

X (7)=FEEI*FLOAT (I- (N+1) /2) /RMPG/DR

X(8)=X(7)+FII

KK=I+NCOEF

ANGLE (1) =Z (RK)-Z (1)

ERROR (I)=(ANGLE (I)-FII)*3600.D0

WRITE (LP,60) X(7),X(8),ANGLE(I),ERROR (I)

FORMAT (1X,'(',F7.2,'--—-',F7.2,'):',F15.7,F15.7)

CONTINUE

DO 95 I=NMIN,NT

ATEMP2=ERROR (I)

IF (I.NE.NMIN) THEN

IF (ATEMP1*ATEMP2.LE.0.D0) GOTO 105

END IF

ATEMP1=ATEMP2

CONTINUE
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WRITE (LP,160)
160 FORMAT (//1X,'MESHING IS DISCONTINUOUS')

GO TO 505
105 IF (DABS (ATEMP1).LT.DABS (ATEMP2)) I=I-1

EMAX=0.

EMIN=0.

NTEMP=NCOEF+1

DO 135 J=1,NTEMP

KS=I+J-1

ET=ERR (KS)

IF (ET.LT.EMIN) EMIN=ET

IF (ET.GT.EMAX) EMAX=ET
135 CONTINUE

ET=EMAX-EMIN

KK=I1+NCOEF

WRITE (LP,170) z(1),Z(KK),ET
170 FORMAT (//1X,'WORKING RANGE FOR ONE TOOTH: ',F7.2,'-——-',F7.2/

+ 1X, 'THE MAXIMUM KINEMATIC ERROR: ',F12.4,' (S)',I2)
505 CONTINUE

STOP

END

SUBROUTINE FUNC

IMPLICIT REAL*8(A-H,0-Z)
DOUBLE PRECISION KSIN,MU,KK,KSIC
COMMON /BLOCK1/ X(13),Y(10),A(10,10),Y1(10),IPVT(10) ,WORK(10),
+ EPSI,DELTA,NC,NE,NDIM
COMMON /BLOCK2/ S(4,4),AT(5),C,RP,RG,CK,SK,CB,SB,CKC,KSIC,TB,
+ COEG1,COEG2,RMGP,AA,DR,KK,R
C o Je Je Yo Fe o Fe o Je Yo s Fo e I v o o ok ok d sk v e e e e ke e Yo e e ek e s e ok Fe e e e sk e e de sk e sk
20 TEMP=CKC*(1.-AA*X(4)/(RMGP+1.))
IF (DABS(TEMP).GT.1.D0) THEN
X(4)=x(7
GOTO 20
END IF
C WRITE (6,220) TEMP,X(4),AA
C 220 FORMAT (1X, 'TEMP=',E15.7,'X(4)=',E15.7,'AA=',F15.7)
RLAM=KSIC~DARCOS (TEMP)
DLAMDF=-CKC*AA/ (RMGP+1.) /DSQRT (1.-TEMP*TEMP)
FEEGP=X (4) *RMGP~AA/2.*X (4) *X (4) +RLAM
DFGDFP=RMGP-AA*X (4) +DLAMDF
CONA=AT (5)
CONB=AT (2) *FEEGP+AT (4)
CONC=AT (3) *FEEGP+AT (1) *FEEGP*FEEGP
COND=CONB*CONB-4 . *CONA*CONC
IF (COND.LT.0.) THEN
X(4)=x(7)
GOTO 20
END IF
COND=DSQRT (COND)
TP=(-~CONB+COND) /2./CONA
IF (COND.EQ.0.0) THEN
DTPDFG=-AT(2) /2./CONA
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ELSE
DTPDFG= (-AT (2) - (AT (2) *CONB-2.*CONA* (AT (3) +2.*AT (1) *FEEGP) ) /COND)
+ /2./CONA

END IF
e dededde ke e dook ke de sk ek ok ok sk s e s e ke e e e de Sk ke e ke e e e s e sk de e e ke e ke sk b ek e ke ke

C X(4)=FEEP; X(7)=FEEl

AP1=X(4)-X(7)

AP2=AP1-RLAM

AP3=AP2+KSIC

AP4=X (4) -RLAM+KSIC

DAP4DF=1.-DLAMDF

CAP4=DCOS (AP4)

SAP4=DSIN (AP&)

AP=-TP*SB+RG*FEEGP

DAPDF= (-SB*DTPDFG+RG) *DFGDFP

MU=X (4) +KSIC-RLAM

DMUDFP=1.+DLAMDF

ALP1=R* (DSIN (MU+X (3) ) -DSIN (MU))

ALP2=R* (DCOS (MU+X (3)) -DCOS (MU) ) 4
XPF=CK*CK/CKC*DCOS (AP3) *AP+RG*DSIN (AP2) ~ (RP+RG) *DSIN (AP1) +ALP2
YPF=CK*CK/CKC*DSIN (AP3) *AP-RG*DCOS (AP2) + (RP+RG) *DCOS (AP1) +ALP1
ZPF=TP*CB*CK*CK/CKC/CKC-SK*SK*TB*RG*FEEGP

CHeddededoddededodeddedededededededfe s dede skt s dodede e sk e sk sk dede e sl oo ek

C 130

C****

DXDA=-DSIN (MU+X (3))
DYDA=DCOS (MU+X(3))
DXDF=CK*CK/CKC* (CAP4*DAPDF-SAP4*AP*DAP4DF) +RG*DCOS (X (4) —RLAM)

+ * (1.,-DLAMDF) - (RP+RG) *DCOS (X (4) ) —ALP1*DMUDFP
DYDF=CK*CK/CKC* (SAP4*DAPDF+CAP4*AP*DAP4DF) +RG*DSIN (X (4) —-RLAM)
+ * (1.-DLAMDF) - (RP+RG) *DSIN (X (4) ) +ALP2*DMUDFP

DZDF=CB*CK*CK/CKC/CKC*DTPDFG*DFGDFP—-SK*SK*TB*RG*DFGDFP
XNP=DYDA*DZDF

YNP=-DXDA*DZDF

ZNP=DXDA*DYDF-DYDA*DXDF

RMN=DSQRT (XNP*XNP+YNP*YNP+ZNP*ZNP)

WRITE(6,130) DXDA,DZDA,DXDF,DYDF,DZDF,XNP,YNP,ZNP,RMN, TP, AP
FORMAT (1X, '$$S$',5F15.7/4X,5F15.7)

XNP=XNP /RMN

YNP=YNP/RMN

ZNP=ZNP/RMN
ekt ke h kbbb hhhbdhdehhdehhdhddhhdhss
XNPF=XNP*DCOS (X (7) ) +YNP*DSIN (X (7))
YNPF=YNP*DCOS (X (7) ) ~XNP*DSIN (X (7))

ZNPF=ZNP

CF2FG=DCOS (X (1))

SF2FG=DSIN (X (1))

CF2FGK=DCOS (X (1) +KSIC)

SF2FGK=DSIN (X (1) +KSIC)

AG=-X (5) *SB+RG*X (2)

RFG1=CK*CK/CKC*CF2FGK*AG+RG*SF2FG
RFG2=CK*CK/CKC*SF2FGK*AG-RG*CF2FG

RFG3=X (5) *CB—AG*SK*SK*TB

RNFG1=CK*CB*CF2FG-SK*SF2FG

RNFG2=CK*CB*SF2FG+SK*CF2FG

RNFG3=CK*SB
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XGF=RFG1*S(1,1)+RFG2*S(1,2)+RFG3*S(1,3)
YGF=RFG1*S (2, 1) +RFG2*S (2, 2) +RFG3*S(2,3)
ZGF=RFG1*S(3,1) +RFG2*S(3,2) +RFG3*S(3,3)
XNGF=RNFG1*S(1,1)+RNFG2*S(1,2)+RNFG3*S(1,3)
YNGF=RNFG1*S (2, 1) +RNFG2*S (2, 2) +RNFG3*S (2, 3)
ZNGF=RNFG1*S (3, 1) +RNFG2*S (3, 2) +RNFG3*S(3,3)
WRITE (6,100) X(1),X(2),X(3),X(4),%x(5)
WRITE (6,100) XPF,YPF,ZPF,XGF, YGF,ZGF
FORMAT (1X,'%%%%%',8E15.7)

WRITE (6,100) XNPF,YNPF,ZNPF,XNGF, YNGF, ZNGF
Y (1) =XPF-XGF

Y (2) =YPF-YGF-C

Y (3)=ZPF-ZGF

Y (5) =XNPF-XNGF

Y (4) =ZNPF-ZNGF

X (10) =DSQRT (XPF*XPF+YPF*YPF)

X (11) =DSQRT (XGF*XGF+YGF*YGF)

X(12)=zPF

X(13)=zGF

WRITE (6,20) (Y(I1),1I=1,5)

FORMAT (1X,'$$$S$',6F15.7)

RETURN

END

SUBROUTINE INTMAT (A,N,M)

THIS SUBROUTINE IS USED TO INITIATE THE MATRIX, WITH UNIT DIAGONAL

10

15

25
35

ELEMENTS AND NULL OTHER ELEMENTS
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(4,4)

DO 5 I=1,N

DO 5 J=1,M

A(I,J)=0.

IF (I.EQ.J) A(I,D)=1.

CONTINUE

RETURN

END

SUBROUTINE NONLIN

IMPLICIT REAL*8(A-H,0-Z)
COMMON /BLOCK1/ X(13),Y(10),a(10,10),Y1(10),IPVT(10),WORK(10),
+ EPSI,DELTA,NC,NE,NDIM

DO 5 I=1,NC

CALL FUNC

WRITE (6,10) I,(X(3),Y(d,J=1,5)

FORMAT (1X, '***' 15/5(1X,2D15.7/))
DO 15 J=1,NE

IF (DABS(Y(J)).GT.EPSI) GO TO 25

CONTINUE

GO TO 105

DO 35 J=1,NE

Y1(D=YQ)
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DO 45 J=1,NE
DIFF=DABS (X (J)) *DELTA
IF (DABS(X(J)).LT.1.D-12) DIFF=DELTA
XMAM=X (J)
X(3)=X(J)-DIFF
CALL FUNC
X (J) =XMAM
DO 55 K=1,NE
55 A(K,J)=(Y1(K)-Y(K)) /DIFF
45 CONTINUE
DO 65 J=1,NE
65 Y(J)=-Y1(J)
DO 205 K=1,NE
205 WRITE (6,245) (A(X,J),J=1,NE)
245 FORMAT (1X,'---',5D15.7)
CALL DECOMP (NDIM,NE,A,COND, IPVT,WORK)
CALL SOLVE (NDIM,NE,A,Y,IPVT)
DO 75 J=1,NE
75 X(D=X(D+Y()
5 CONTINUE
105 WRITE (6,20) I
20 FORMAT (1X,'I=',12)
105 RETURN
END

SUBROUTINE DECOMP (NDIM,N,A,COND, IPVT,WORK)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(NDIM,N),WORK(N),IPVT(N)

DECOMPOSES AREAL MATRIX BY GAUSSIAN ELIMINATION,
AND ESTIMATES THE CONDITION OF THE MATRIX.

-COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,

M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)
USE SUBROUTINE SOLVE TO COMPUTE SOLUTIONS TO LINEAR SYSTEM.
INPUT. .

NDIM = DECLARED ROW DIMENSION OF THE ARRAY CONTAINING A

N = ORDER OF THE MATRIX
A = MATRIX TO BE TRIANGULARIZED
OUTPUT. .

A CONTAINS AN UPPER TRIANGULAR MATRIX U AND A PREMUTED
VERSION OF A LOWER TRIANGULAR MATRIX I-L SO THAT
(PERMUTATION MATRIX) *A=L*U

COND = AN ESTIMATE OF THE CONDITION OF A.
FOR THE LINEAR SYSTEM A*X = B , CHANGES IN A AND B
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MAY CAUSE CHANGES COND TIMES AS LARGE IN X,

IF COND+1.0 .EQ. COND , A IS SINGULAR TO WORKING
PRECISION. COND IS SET TO 1.0D+32 1IF EXACT
SINGULARITY IS DETECTED.

IPVT = THE PIVOT VECTOR
IPVT (K) THE INDEX OF THE K-TH PIVOT ROW
IPVT(N) = (-1)**(NUMBER OF INTERCHANGES)

WORK SPACE.. THE VECTOR WORK MUST BE DECLARED AND INCLUDED
IN THE CALL. 1ITS INPUT CONTENTS ARE IGNORED.
ITS OUTPUT CONTENTS ARE USUALLY UNIMPORTANT.

THE DETERMINANT OF A CAN BE OBTAINED ON OUTPUT BY
DET(A) = IPVT(N) * A(1,1) * A(2,2) * ... * A(N,N)

IPVT(N) =1
IF (N.EQ.1) GO TO 150
NM1=N-1
COMPUTE THE 1-NORM OF A .
ANORM=0.D0
DO 20 J=1,N
T=0.D0
DO 10 I=1,N
10  T=T+DABS(A(I,)))
IF (T.GT.ANORM) ANORM=T
20 CONTINUE
DO GAUSSIAN ELIMINATION WITH PARTIAL

PIVOTING.
DO 70 K=1,NM1
KP1=K+1
FIND THE PIVOT.
M=K

DO 30 I=KP1,N
IF (DABS(A(I,K)).GT.DABS(A(M,K))) M=I
30 CONTINUE
IPVT (K) =M
IF (M.NE.K) IPVT(N)=~IPVT(N)
T=A(M,K)
AM,K)=Aa(K,K)
AKK,K) =T
SKIP THE ELIMINATION STEP IF PIVOT IS ZERO.
IF (T.EQ.0.DO) GO TO 70

COMPUTE THE MULTIPLIERS.
DO 40 I=KP1,N
40 A(1,K)=-A(1,K)/T
INTERCHANGE AND ELIMINATE BY COLUMNS.
DO 60 J=KP1,N
T=A(M,J)
AM, D =A(K,T)
A(K,J)=T
IF (T.EQ.0.D0) GO TO 60
DO 50 I=KP1,N
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50 AT, D=A0,D+AI,RK)*T
60 CONTINUE
70 CONTINUE

COND = (1-NORM OF A)* (AN ESTIMATE OF THE 1-NORM OF A-INVERSE)

THE ESTIMATE IS OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE
SMALL SINGULAR VECTOR. THIS INVOLVES SOLVING TWO SYSTEMS

OF EQUATIONS, (A-TRANSPOSE)*Y = E AND A*Z = Y WHERE E

IS A VECTOR OF +1 OR -1 COMPONENTS CHOSEN TO CAUSS GROWTH IN Y.
ESTIMATE = (1-NORM OF Z)/(1-NORM OF Y)

SOLVE (A-TRANSPOSE)*Y = E .
DO 100 K=1,N
T=0.D0
IF (K.EQ.1) GO TO 90
KM1=K-1
DO 80 I=1,KM1
80 T=T+A(I,K)*WORK(I)
90 EK=1.D0
IF (T.LT.0.DO) EK=-1.DO
IF (A(X,K).EQ.0.D0O) GO TO 160
100 WORK (K) =- (EK+T) /A(K,K)
DO 120 KB=1,NMl
K=N-KB
T=0.D0
KP1=K+1
DO 110 I=KP1,N
110  T=T+A(I,K) *WORK (K)
WORK (K) =T
M=IPVT (K)
IF (M.EQ.K) GO TO 120
T=WORK (M)
WORK (M) =WORK (K)
WORK (K) =T
120 CONTINUE

YNORM=0.DO
DO 130 I=1,N
130 YNORM=YNORM+DABS (WORK (I))

SOLVE A*Z =Y
CALL SOLVE (NDIM,N,A,WORK,IPVT)

ZNORM=0.D0
DO 140 I=1,N
140 ZNORM=ZNORM+DABS (WORK(I))

ESTIMATE THE CONDITION.
COND=ANORM*ZNORM/YNORM
IF (COND.LT.1.D0) COND=1.D0
RETURN
1-BY-1 CASE..
150 COND=1.D0
IF (A(1,1).NE.0.DO) RETURN
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EXACT SINGULARITY
160 COND=1.0D32
RETURN
END
SUBROUTINE SOLVE (NDIM,N,A,B,IPVT)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(NDIM,N),B(N),IPVT(N)

SOLVES A LINEAR SYSTEM, A*X =.B
DO NOT SOLVE THE SYSTEM IF DECOMP HAS DETECTED SINGULARITY.

-COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,
M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

INPUT. .

NDIM = DECLARED ROW DIMENSION OF ARRAY CONTAINING A

N = ORDER OF MATRIX
A = TRIANGULARIZED MATRIX OBTAINED FROM SUBROUTINE DECOMP
B = RIGHT HAND SIDE VECTOR '

IPVT PIVOT VECTOR OBTAINED FROM DECOMP

OUTPUT..
B = SOLUTION VECTOR, X

DO THE FORWARD ELIMINATION.
IF (N.EQ.1) GO TO 50
NM1=N-1
DO 20 K=1,NM1

KP1=K+1

M=IPVT (K)

T=B (M)

B (M) =B (K)

B(K)=T

DO 10 I=KP1,N
10 B(I)=B(I)+A(I,K)*T
20 CONTINUE

NOW DO THE BACK SUBSTITUTION.
DO 40 KB=1,NM1

KM1=N-KB

K=KM1+1

B (K) =B (K) /A(K,K)

T=-B (K)

DO 30 I=1,KM1

30 B(ID=B(I)+A(I,RK)*T

40 CONTINUE

50 B(1)=B(1)/A(1,1)
RETURN
END
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PURPOSE

THIS PROGRAM IS USED TO CALCULATE THE TRANSMISSION ERRORS OF A
HELICAL PINION AND A HELICAL GEAR IN MESHING WHEN THEIR AXES ARE
DEFORMED BY INTERACTING FORCE(BOTH PINION AND GEAR ARE NOT CROWNED)

NOTE

THIS PROGRAM IS WRITTEN IN FORTRAN 77. 1IT CAN BE COMPILED BY V
COMPILER IN IBM MAINFRAME OR FORTRAN COMPILER IN VAX SYSTEM.

IMPLICIT REAL*8(A-H,0-Z)

DOUBLE PRECISION KSIN,MU,MUO,KSIC

DIMENSION Z(99) ,ANGLE (99) ,ERROR(99) ,ERR (99) ,W(99) ,RPR(99) ,RGR(99),
+ S1(4,4),52(4,4),2ZP(99)

COMMON /BLOCK1/ X(12),Y(10),4(10,10),Y1(10),IPVT(10),WORK(10),
+ EPSI,DELTA,NC,NE,NDIM,NCTL,CX2

COMMON /BLOCK2/ S(4,4),C,RP,RG,CK,SK,CB,SB,CKC,KSIC,ZG, TB, ZNPF,
+ COEG1,COEG2,CB1,SB1,TB1

DEFINE PARAMETERS USED BY PROGRAMS

(1) IN ANG LP ARE UNIT NUMBERS ASSIGNED TO THE INPUT AND OUTPUT
DEVICES
IN=5
LP=6
(2) NDBUG IS USE TO CONTROL THE AUXILIARY OUTPUT FOR DEBUGGING
NDBUG=1
(3) NC IS THE UPPER LIMITATION OF REPEATATION FOR SOLVING NONLINEAR
EQUTIONS;
EPSI IS THE CLEARANCE OF FUNCTION VALUES WHEN THE FUNCTIONS
IS CONSIDERED AS SOLVED (ALL FUNTIONS HAVE FORMS OF F(X)=0);
DELTA IS THE RELATIVE DIFFERENCE FOR TAKING DERIVATIVES
NC, EPSI AND DELTA MAY BE CHANGED WHEN SOLUTIONS ARE DIVERGENT
OR LESS ACCURATE
NC=100
DELTA=1.D-4
EPSI=1,D-13
(4) OTHER PARAMETERS(DON'T CHANGE)
NDIM=10
DR=DATAN (1.DO0) /45.D0
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C DEFINE INPUT PARAMTERS OF PROBLEM(USE INCH AS UNIT OF LENGTH)
C (1) PINION AND GEAR: PN=DIAMETRAL PITCH; NP=PINION TOOTH NUMBER;
c RMPG=TOOTH NUMBER RATIO (GEAR TOOTH NO./NP);
C KSIN=PRESSURE ANGLE IN NORMAL SECTION;
C BETAP=HELIX ANGLE OF PINION AND GEAR;
C PAD=HEIGHT OF ADDENDUM OF PINION;
C GAD=HEIGHT OF ADDENDUM OF GEAR;
C ZG=GEAR TOOTH LENGTH (PINION TOOTH LENGTH IS LONGER)
C COE=COEFF. OF CENTRAL DISTANCE (USUALLY COE=1.)
PN=10.D0
NP=20
RMPG=2.D0
KSIN=20.D0*DR
BETAP=15.DO*DR
PAD=1.0/PN
GAD=1.0/PN
2G= 5./PN
COE=1.000D0
(2) SHAFT DEFORMATION:
NSIM=MODEL ID NO. (1=SIMPLIFIED DEFORMATION MATRIX;
2=UNSIMPLIFIED DEFORMATION MATRIX)
RLAMP=PINION SHAFT ROTATION
RLAMG=GEAR SHAFT ROTATION
RVP=PINION SHAFT DEFLECTION
RVG=GEAR SHAFT DEFLECTION

o000 n

NSIM=1
RLAMP= 2./60.*DR
RLAMG= 2,/60.*DR
RVP=0.0125
RVG=0.0125
(3) OUTPUT: FEEI=INCREMENT OF ROTATION ANGLE OF PINION (DEGREEE)
FEEI=1.0DO*DR

(@]

DESCRIPTION OF OUTPUT PARAMERTERS

FEE1=ROTATION ANGLE OF PINION
FEE2=ROTATION ANGLE OF GEAR
RP=RADIUS OF PINION CONTACT POINT
RG=RADIUS OF GEAR CONTACT POINT

FIND AUXILIARY VALUES FOR CALCULATION

oo 0n0

DEFINE USEFUL CONSTANTS AND PARAMETERS FOR PINION AND GEAR
DELTAB=DR/60.%*( 0.D0)
BETAP1=BETAP+DELTAB
CLP=DCOS (RLAMP)
SLP=DSIN (RLAMP)
CLG=DCOS (RLAMG)
SLG=DSIN (RLAMG)
WRITE (LP,4) CLP,SLP,CLG,SLG

4 FORMAT (1X,4F15.7)

SK=DSIN (KSIN)
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CK=DCOS (KSIN)
SB=DSIN (BETAP)
CB=DCOS (BETAP)
TB=SB/CB
SB1=DSIN(BETAP1)
CB1=DCOS (BETAP1)
TB1=SB1/CB1
KSIC=DATAN (SK/CK/CB)
CKC=DCOS (KSIC)
SKC=DSIN (KSIC)
PT=PN*CB
RP=NP/2./PT
RPA=RP+PAD
RPATOL=RPA-0.0005D0
RG=RP*RMPG
RGA=RG+GAD
RGATOL=RGA-0.0005D0
WRITE (LP,56) RPATOL,RGATOL

56 FORMAT (1X,'&&&&&&','RPA=' F15.7,5X,'RGA=',F15.7)
COEG1=1.+SK*SK*TB*TB
COEG2=RG/COEG1
ZNPF=CK*SB1
C=(RP+RG) *COE
CALL INTMAT(S,4,4)
CALL INTMAT(S1,4,4)
CALL INTMAT(S2,4,4)
DO 505 LL=1,2
NSIM=LL
IF (NSIM.EQ.1) THEN
WRITE (LP,500)

500 FORMAT (1H1,///,1X,

+ 'THE CASE OF SIMPLIFIED DEFORMATION MATRIX OF GEAR AXES')
S (1, 3)=(RLAMP+RLAMG) *CKC
S(2,3) =(RLAMP+RLAMG) *SKC
S(sy 1)=—S(193)
s(3,2)=-5(2,3)
S(1,4)=(RVP+RVG) *CKC
S (2,4)=(RVP+RVG) *SKC+C
S(3,4)=-C*RLAMP*SKC
ELSE
WRITE (LP,501)

501 FORMAT (1H1,///,1X,

+ 'THE CASE OF UNSIMPLIFIED DEFORMATION MATRIX OF GEAR AXES')
S$1(1,1)=1.+CKC*CKC*(CLP-1.)
$1(1,2)=SKC*CKC* (CLP-1.)
$1(1,3)=CKC*SLP
S1(2,1)=s1(1,2)
$1(2,2)=1.+SKC*SKC* (CLP-1.)
S1(2,3)=SKC*SLP
S1 (3’ 1)=_Sl (1 ] 3)
$1(3,2)=-51(2,3)
$1(3,3)=CLP
S1(1,4)=RVP*CKC*CLP
S1(2,4)=RVP*SKC*CLP
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S1(3,4)=-RVP*SLP
S$2(1,1)=1.+CKC*CKC*(CLG-1.)
$2(1,2)=SKC*CKC* (CLG-1.)
S2(1,3)=CKC*SLG
S2(2,1)=s81(1,2)
S§2(2,2)=1,+SKC*SKC* (CLG-1.)
$2(2,3)=SKC*SLG
$2(3,1)=-s1(1,3)
$2(3,2)=-51(2,3)
S2(3,3)=CLG
S2(1,4)=RVG*CKC
S2(2,4)=RVG*SKC+C
$2(3,4)=0.
DO 12 MMI=1
DO 12 MMJ=1
S (MMI,MMJ)=0.
DO 12 MMK=1,4

S (MMI,MMJ) =S (MMI,MMJ)+S1 (MMI,MMK) *S2 (MMK,MMJ)

12 CONTINUE
END IF
NCOEF=IDINT (360.*DR/FEEI/FLOAT (NP)+0.5)
N=3*NCOEF
NHALF=(N+1) /2
XIN=0.
DO 205 L=1,2
LSGN= (-1) **L
NCTL=0
NE=4
DO 5 I=1,NE
5 X(I)=0.D0

X(10)=0.
X(11)=0.
DO 15 I=1,NHALF

IF (NCTL.EQ.2) GOTO 205
LI=NHALF+LSGN* (I-1)

IF (L.EQ.1) NMIN=LI

IF (L.EQ.2) NMAX=LI
X (7)=LSGN*FEEI*FLOAT (I-1)

IF (X(10).LE.RPATOL) THEN

X(4)=-X(7)
ELSE

NE=3

NCTL=NCTL+1
END IF

IF (X(11).LT.RGATOL) THEN

X(2)=X(7) /RMPG

ELSE

NCTL=NCTL+1

CX2=X(2)

END IF
X (3) =(ZG-RP*X (&) *SK*SK*TB) /CB/COEG1

CALL NONLIN
X(8)=Xx(1)+X(2)
C FIND INITIAL VALUE OF X(8)

»3
, &
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c 21
15
205

10

20
25

80

60
55

95
160

105

IF (L.EQ.1.AND.I.EQ.1) THEN
XIN=X(8)

GO TO 15

END IF

X (8)=X(8)-XIN

W(LI)=X(7) /DR

Z(LI)=X(8) /DR

ERR (LI) = (X (8) -X (7) /RMPG) *3600.D0/DR

RPR (L1)=X(10)

RGR(LI)=X(11)

ZP(LT)=X(12)

WRITE (LP,21) LI,W(LI),Z(LI),ERR(LI),RPR(LI),RGR(LI)

FORMAT (1X,I12,1X,5F15.7,F15.7)

CONTINUE

CONTINUE

WRITE (LP,10)

FORMAT (////8X,'FEE1(D)',8X,'FEE2(D)',8X, 'K-ERROR(S)',5X,
'RP', 13X, 'RG',F15.7/)

DO 25 I=NMIN,NMAX

WRITE (LP,20) W(I),z(I),ERR(I),RPR(I),RGR(I)

FORMAT (1X,5F15.7,F15.7)

CONTINUE

NT=NMAX-NCOEF

FII=FEEI/DR/2.DO*FLOAT (NCOEF)

WRITE (LP,80)

FORMAT (//,' FIND THE WORKING RANGE FOR ONE TOOTH:',F15.7/)

DO 55 I=NMIN,NT

X (7)=FEEI*FLOAT (I~ (N+1) /2) /DR/2.DO

X(8)=X(7)+F1I

KK=1+NCOEF

ANGLE (1) =Z (KK)-Z (1)

ERROR (I)=(ANGLE (I)-FII)*3600.D0

WRITE (LP,60) X(7),X(8),ANGLE(I),ERROR(I)

FORMAT (1X,'(',F7.2,'-——=',F7.2,'):',F15.7,F15.7)

CONTINUE

DO 95 I=NMIN,NT

ATEMP2=ERROR (I)

IF (I.NE.NMIN) THEN

IF (ATEMP1*ATEMP2.LE.0.D0) GOTO 105

END IF

ATEMP1=ATEMP2

CONTINUE

WRITE (LP,160)

FORMAT (//1X,'MESHING IS DISCONTINUOUS')

GO TO 505

IF (DABS(ATEMP1) .LT.DABS (ATEMP2)) I=I-1

EMAX=0.

EMIN=0.

NTEMP=NCOEF+1

DO 135 J=1,NTEMP

KS=I+J-1

ET=ERR (KS) :

IF (ET.LT.EMIN) EMIN=ET
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IF (ET.GT.EMAX) EMAX=ET
135 CONTINUE
ET=EMAX-EMIN
KK=I+NCOEF
WRITE (LP,170) z(I),Z(KK),ET
170 FORMAT (//1X, 'WORKING RANGE FOR ONE TOOTH: ',F7.2,'-——-',F7.2/
+ 1X, 'THE MAXIMUM KINEMATIC ERROR: ',F15.7,' (S)',12)
505 CONTINUE
STOP
END

SUBROUTINE FUNC
IMPLICIT REAL*8 (A-H,0-2)

DOUBLE PRECISION KSIN,MU,MUO,KSIC
COMMON /BLOCK1/ X(12),Y(10),A(10,10),Y1(10),IPVT(10) ,WORK(10),

+ EPSI,DELTA,NC,NE,NDIM,NCTL,CX2
COMMON /BLOCK2/ S(4,4),C,RP,RG,CK,SK,CB,SB,CKC,KSIC,ZG,TB,ZNPF,
+ COEG1,COEG2,CB1,SB1,TB1

C X(4)=FEEP; X(7)=FEEl
X(6)=X(4)+x(7)
CF1FP=DCOS (X (6))
SF1FP=DSIN (X(6))
AP=X(3) *SB1+RP*X (4)
XPF=-CK*CK/CKC*DCOS (X (6) ~KSIC) *AP+RP*SF1FP
YPF=CK*CK/CKC*DSIN(X(6)-KSIC) *AP+RP*CF1FP
ZPF=X(3) *CB1+AP*SK*SK*TB1
XNPF=CK*CB1*CF1FP+SK*SF1FP
YNPF=-CK*CB1*SF1FP+SK*CF1FP
C ZNPF=CK*SB1
CF2FG=DCOS (X (1))
SF2FG=DSIN(X (1))
CF2FGK=DCOS (X (1) +KSIC)
SF2FGK=DSIN (X (1) +KSIC)
AG1=(~ZG*TB+RG*X(2)) /COEG]
RFG1=CK*CK/CKC*CF2FGK*AG1+RG*SF2FG
RFG2=CK*CK/CKC*SF2FGK*AG1-RG*CF2FG
C RFG3=ZG
RTFG1=CK*CK/CKC* ( AG1*SF2FGK+COEG2*CF2FGK) -RG*CF2FG
RTFG2=CK*CK/CKC* (~-AG1*CF2FGK+COEG2*SF2FGK) ~RG*SF2FG
C RTFG3=0.
XGF=RFG1*S(1,1)+RFG2*S(1,2)+2G*s(1,3)+S(1,4)
YGF=RFG1*S(2,1)+RFG2*S(2,2)+2G*S(2,3)+S(2,4)
ZGF=RFG1*S (3, 1) +RFG2*S (3,2)+2G*S(3,3)+S(3,4)
XTGF=RTFG1*S(1,1)+RTFG2*S(1,2)
YTGF=RTFG1*S(2,1) +RTFG2*S(2,2)
ZTGF=RTFG1*S(3,1)+RTFG2*S(3,2)
WRITE (6,100) RTFG1,RTFG2,AGl,COEG2,COEG1,CF2FGK,SF2FGK
WRITE (6,100) X(1),X(2),X(3),Xx(4),X(5)
WRITE (6,100) XPF,YPF,ZPF,XGF,YGF,ZGF
100 FORMAT (1X,'%%%%%',8E15.7)
WRITE (6,100) XNPF,YNPF,ZNPF,XTGF,YTGF,ZTGF
Y (1) =XPF-XGF
Y (2) =YPF-YGF

eNesEsEES]
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Y (3)=ZPF-2GF
IF (NCTL.NE.O) THEN
Y (4)=X(2)-CX2
ELSE
Y (4) =XNPF*XTGF+YNPF*YTGF+ZNPF*ZTGF
END IF
X (10) =DSQRT (XPF*XPF+YPF*YPF)
X(11)=DSQRT (RFG1*RFG1+RFG2*RFG2)
X (12)=ZPF
WRITE (6,20) (Y(II),II=1,4)
20 FORMAT (1X,'$$SS',6F15.7)
RETURN
END

SUBROUTINE INTMAT (A,N,M)

THIS SUBROUTINE IS USED TO INITIATE THE MATRIX, WITH UNIT DIAGONAL
ELEMENTS AND NULL OTHER ELEMENTS
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(4,4)

DO 5 I=1,N

DO 5 J=1,M

A(1,D)=0.

IF (I1.EQ.J) A(I,J)=1.
5 CONTINUE

RETURN

END

SUBROUTINE NONLIN

IMPLICIT REAL*8 (A-H,0-2)
COMMON /BLOCK1/ X(12),Y(10),A(10,10),Y1(10),IPVT(10),WORK(10),
+ EPSI,DELTA,NC,NE,NDIM,NCTL,CX2

DO 5 I=1,NC
CALL FUNC
WRITE (6,10) I,(X(1),Y(D),J=1,4)
10 FORMAT (1X,'***' 15/5(1X,2D15.7/))
DO 15 J=1,NE
IF (DABS(Y(J)).GT.EPSI) GO TO 25
15 CONTINUE
GO TO 105
25 DO 35 J=1,NE
35 Y1(I)=YQ)
DO 45 J=1,NE
DIFF=DABS (X (J)) *DELTA
IF (DABS(X(J)).LT.1.D-12) DIFF=DELTA
XMAM=X (J)
X(J)=X(J)-DIFF
CALL FUNC
X (J) =XMAM
DO 55 K=1,NE
55 A(K,J)=(Y1(K)-Y(K)) /DIFF
45 CONTINUE
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DO 65 J=1,NE
65 Y(I)=-Y1(D)
DO 85 K=1,NE
85 WRITE (6,104) (A(K,J),J=1,NE),Y(K)
104 FORMAT(1X,'A',2X,5E15.7)
CALL DECOMP (NDIM,NE,A,COND,IPVT,WORK)
CALL SOLVE (NDIM,NE,A,Y,IPVT)
DO 75 J=1,NE
75 X(D=X(ND+Y(Q)
5 CONTINUE
105 RETURN
END

SUBROUTINE DECOMP (NDIM,N,A,COND,IPVT,WORK)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A (NDIM,N),WORK(N),IPVT(N) -

DECOMPOSES AREAL MATRIX BY GAUSSIAN ELIMINATION,
AND ESTIMATES THE CONDITION OF THE MATRIX.

—COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,

M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)
USE SUBROUTINE SOLVE TO COMPUTE SOLUTIONS TO LINEAR SYSTEM.
INPUT..

NDIM = DECLARED ROW DIMENSION OF THE ARRAY CONTAINING A

N = ORDER OF THE MATRIX
A = MATRIX TO BE TRIANGULARIZED
OUTPUT..

A CONTAINS AN UPPER TRIANGULAR MATRIX U AND A PREMUTED
VERSION OF A LOWER TRIANGULAR MATRIX 1I-L SO THAT
(PERMUTATION MATRIX) *A=L*U

COND = AN ESTIMATE OF THE CONDITION OF A.
FOR THE LINEAR SYSTEM A*X = B , CHANGES IN A AND B
MAY CAUSE CHANGES COND TIMES AS LARGE IN X.
IF COND+1.0 .EQ. COND , A IS SINGULAR TO WORKING
PRECISION. COND IS SET TO 1.0D+32 IF EXACT
SINGULARITY IS DETECTED.

IPVT THE PIVOT VECTOR
IPVT(K) = THE INDEX OF THE K-TH PIVOT ROW
IPVT(N) = (~1)**(NUMBER OF INTERCHANGES)

WORK SPACE.. THE VECTOR WORK MUST BE DECLARED AND INCLUDED
IN THE CALL. ITS INPUT CONTENTS ARE IGNORED.
ITS OUTPUT CONTENTS ARE USUALLY UNIMPORTANT.
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THE DETERMINANT OF A CAN BE OBTAINED ON OUTPUT BY
DET(A) = IPVT(N) * A(1,1) * A(2,2) * ... * A(N,N)

IPVT(N) =1
IF (N.EQ.1) GO TO 150
NM1=N-1
COMPUTE THE 1-NORM OF A .
ANORM=0.D0O
DO 20 J=1,N
T=0.D0
DO 10 I=1,N
10  T=T+DABS(A(I,J))
IF (T.GT.ANORM) ANORM=T
20 CONTINUE
DO GAUSSIAN ELIMINATION WITH PARTIAL

PIVOTING.
DO 70 K=1,NM1
KP1=K+1
FIND THE PIVOT,
M=K

DO 30 I=KP1,N
IF (DABS(A(I,K)).GT.DABS(A(M,K))) M=I

30 CONTINUE

IPVT (K) =M

IF (M.NE.K) IPVT(N)=—-IPVT(N)

T=A(M,K)

AM,K)=A(K,K)

A(K,K)=T

SKIP THE ELIMINATION STEP IF PIVOT IS ZERO.

IF (T.EQ.0.D0) GO TO 70

COMPUTE THE MULTIPLIERS.
DO 40 I=KP1,N
40 A(1,K)=-A(1,K)/T
INTERCHANGE AND ELIMINATE BY COLUMNS.
DO 60 J=KP1l,N
T=A(NM, J)
AM,1)=A(K,T)
ARK,D=T
IF (T.EQ.0.D0) GO TO 60
DO 50 I=KP1,N
50 AT, D=a0,D+A0,K*T
60 CONTINUE
70 CONTINUE

COND = (1-NORM OF A)* (AN ESTIMATE OF THE 1-NORM OF A-INVERSE)

THE ESTIMATE IS OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE
SMALL SINGULAR VECTOR. THIS INVOLVES SOLVING TWO SYSTEMS

OF EQUATIONS, (A-TRANSPOSE)*Y = E AND A*Z = Y WHERE E

IS A VECTOR OF +1 OR -1 COMPONENTS CHOSEN TO CAUSS GROWTH IN Y.
ESTIMATE = (1-NORM OF Z)/(1-NORM OF Y)

SOLVE (A-TRANSPOSE)*Y = E .
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DO 100 K=1,N
T=0.D0
IF (K.EQ.1) GO TO 90
KM1=K-1
DO 80 I=1,KM1
80 T=T+A(I,K)*WORK(I)
90 EK=1.DO
1IF (T.LT.0.DO) EK=-1.D0
1IF (A(K,K).EQ.0.D0) GO TO 160
100 WORK (K)=- (EK+T) /A(K,K)
DO 120 KB=1,NM1
K=N-KB
T=0.D0
KP1=K+1
DO 110 I=KP1,N
110 T=T+A(I,K)*WORK (K)
WORK (K) =T
M=IPVT (K)
IF (M.EQ.K) GO TO 120
T=WORK (M)
WORK (M) =WORK (K)
WORK (K) =T
120 CONTINUE

YNORM=0.DO
DO 130 I=1,N
130 YNORM=YNORM+DABS (WORK (1))

SOLVE A*Z =Y
CALL SOLVE (NDIM,N,A,WORK,IPVT)

ZNORM=0.DO0
DO 140 I=1,N
140 ZNORM=ZNORM+DABS (WORK (I))

ESTIMATE THE CONDITION.
COND=ANORM*ZNORM/ YNORM
IF (COND.LT.1.D0) COND=1.DO
RETURN
1-BY-1 CASE..
150 COND=1.D0
IF (A(1,1).NE.0.DO) RETURN

EXACT SINGULARITY
160 COND=1.0D32
RETURN
END
SUBROUTINE SOLVE (NDIM,N,A,B,IPVT)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NDIM,N),B(N),IPVT(N)

SOLVES A LINEAR SYSTEM, A*X = B
DO NOT SOLVE THE SYSTEM IF DECOMP HAS DETECTED SINGULARITY.
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—COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,
M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

INPUT..

NDIM = DECLARED ROW DIMENSION OF ARRAY CONTAINING A

N = ORDER OF MATRIX
A = TRIANGULARIZED MATRIX OBTAINED FROM SUBROUTINE DECOMP
B = RIGHT HAND SIDE VECTOR
IPVT = PIVOT VECTOR OBTAINED FROM DECOMP
OUTPUT..

B = SOLUTION VECTOR, X

DO THE FORWARD ELIMINATION.
IF (N.EQ.1) GO TO 50
NM1=N-1
DO 20 K=1,NM1
KP1=K+1
M=IPVT (K)
T=B (4)
B (M) =B (K)
B(K)=T
DO 10 I=KP1,N
10 B(I)=B(I)+A(I,K)*T
20 CONTINUE
NOW DO THE BACK SUBSTITUTION.
DO 40 KB=1,NM1
KM1=N-KB
K=KM1+1
B(K)=B (K) /A(K,K)
T=-B (K)
DO 30 I=1,KMl
30 B(I)=B(I)+A(I,K)*T
40 CONTINUE
50 B(1)=B(1)/A(1,1)
RETURN
END
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